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ABSTRACT

Aerial refueling is an integral part of the United States military’s ability to strike

targets around the world with an overwhelming and continuous projection of force.

However, with an aging fleet of refueling tankers and an indefinite replacement sched-

ule the optimization of tanker usage is vital to national security. Optimizing tanker

and receiver refueling operations is a complicated endeavor as it can involve over a

thousand of missions during a 24 hour period, as in Operation Iraqi Freedom and

Operation Enduring Freedom. Therefore, a planning model which increases receiver

mission capability, while reducing demands on tankers, can be used by the military

to extend the capabilities of the current tanker fleet.

Aerial refueling optimization software, created in CASTLE Laboratory, solves the

aerial refueling problem through a multi-period approximation dynamic programming

approach. The multi-period approach is built around sequential linear programs,

which incorporate value functions, to find the optimal refueling tracks for receivers

and tankers. The use of value functions allows for a solution which optimizes over the

entire horizon of the planning period. This approach varies greatly from the myopic

optimization currently in use by the Air Force and produces superior results.

The aerial refueling model produces fast, consistent, robust results which require

fewer tankers than current planning methods. The results are flexible enough to

incorporate stochastic inputs, such as: varying refueling times and receiver mission

loads, while still meeting all receiver refueling requirements. The model’s ability to

handle real world uncertainties while optimizing better than current methods provides

a great leap forward in aerial refueling optimization.

The aerial refueling model, created in CASTLE Lab, can extend the capabilities

of the current tanker fleet. Additionally, the robust nature of the aerial refueling

model’s solutions provides insight into the strength and flexibility of the approximate

dynamic programming method.
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1 Introduction

A tenant of the doctrine guiding the modern United States military states that mili-

tary forces need to respond around the world in a rapid manner with an overwhelming

and continuous projection of force (7). Given the current geopolitical climate, the

stated goals of a rapid response force which is both overwhelming in power and is

able to operate over an extended time frame appear to be contradictory objectives.

During the Cold War the United States was able to focus its assets on the former

Soviet Union with forward deployed assets placed in Germany, Japan, South Korea,

and other strategic locations which surrounded the Soviet Union. Therefore, through

forward basing the United States’ military was guaranteed the ability to respond

rapidly and sustain a continued projection of force. However, since the fall of the So-

viet Union and its satellites the political climate and requirements facing the United

State miliary have become much less stable.

Figure 1: Map of the Political Climate of the Cold War

Due to the instability of the current political environment, the future requirements

placed on the United States military cannot be guaranteed with any more accuracy

than the fall of the Soviet Union was predicted. Additionally, while forward basing

of United States troops on foreign soil was feasible during the Cold War, today other

countries are far less accepting of having American troops stationed on their soil.

1



Lacking a definable future enemy and the ability to forward deploy troops around

the globe, how does the United States expect to quickly respond to crises around the

world with a mass of overwhelming and continued force?

Figure 2: Branches of American Military

The answer lies in the structure of the four branches of the American military. The

modern Marine Corps is designed to respond rapidly and deploy short term ground

assets around the world. The sustainment of the ground forces is the responsibility

of the Army, which has the capability to follow the Marine Corps with a large force

designed for continuous deployment. The shortcoming of the modern military is its

ability to attack over the horizon with aerial assets due to the lack of forward basing.

The United States Navy has the ability to quickly traverse the oceans and operate

in the littoral regions. The ability to work within close proximity to coastal nations

allows the Navy to send ordinance deep into enemy territory. However, bombardment

by Tomahawk missiles and projectiles is not the overwhelming force the United States

military desires for over-the-horizon operations. It is through the joint efforts of the

United States Air Force and Navy’s aircraft inventory that the United States can

gain both air superiority and the ability to send large masses of ordinance deep into

enemy terrain.

Without forward basing, challenges exist such that the Air Force’s aircraft inven-

tory can be out of range of the belligerent nation and the Navy’s aircraft also have

limited ranges and cannot fly much further than the borders of large countries. Aerial

refueling tankers with their extended range and fuel carrying capabilities provide a

gas station in the sky and ensure longer ranges and time on station for other Amer-

ican aircraft. Through aerial refueling the Air Force and Navy are able to provide

over-the-horizon power projection and air superiority which guarantees the Ameri-

2



can military’s ability to rapidly respond around the world with an overwhelming and

continuous projection of force.
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1.1 Aerial Refueling Background

Mid-air refueling is both a technical challenge as well as a complex planning process.

The highly orchestrated maneuvers required to refuel planes flying in excess of 300

knots per hour are multiplied as the Air Force inventory of mid-air refueling planes

must refuel a variety of planes and helicopters flown by the Air Force, Navy and

Marines. In addition to the technical challenges posed by refueling a myriad of dif-

ferent platforms, the planning of mid-air refueling in an incredibly complex process

which always must weigh several different objectives. The military combat com-

mander’s desire to deliver ordinance on specific targets, at specified times, with an

overwhelming mass of force, places great requirements on the air refueling assets. The

overwhelming force requirement places large stresses on the aerial refueling fleet as

missions often involve multiple aircraft, and the aircraft all require simultaneous refu-

eling. The requirements are made even more acute due to bomber and attack/fighters

planes ranges, which are often much shorter than the length of their missions. Ad-

ditionally, hostile air space can limit the ability of aerial refueling tankers to escort

attack planes to their targets. Therefore, in the modern era, the planning of aerial

refueling is a major factor in determining mission success and the military’s ability

to operate efficiently.

Figure 3: KC-10 refueling the Joint Strike Fighter
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1.2 The Beginning of Aerial Refueling

Mid-air refueling was not always such a highly integrated part of a military’s bat-

tlefield success. During War World I an aircraft’s effectiveness focused solely on the

pilot’s ability to shoot down the enemy and not a complex refueling scheme. Since

no in-flight refueling protocol existed every plane in the air had limited range and

time in the air. Surprisingly, this did not provide the impetus for the first attempts

at aerial refueling. Rather, a vaudevillian act by a stunt man and a Naval Lieutenant

years after the war, in 1921, was the first recorded “aerial refueling”. In the first

aerial refueling a stunt man walked out on the wing of a JN-4 plane and onto the

wing of an adjacent JN-4 with a can of gas strapped to his back which he poured into

the gas tank (5). Another early attempt, also in 1921, involved a Naval Lieutenant

flying down the Potomac River and picking up a floating gas can with a grappling

hook (19). While these attempts were very daring they did not provide insight into

the problem of refueling while flying, unless of course the Navy started hiring circus

performers or fisherman.

Two years later, in 1923, the first modern approach of a mid-air refueling using

hoses passed between planes was successfully attempted by two Army Air Corps de

Havilland DH-4Bs (9). While crude by modern standards, the passing of hoses be-

tween planes is effectively the same approach used over 80 years later. The early

excitement generated by the Army’s refueling example led to both an emerging com-

mercial interest and a new breed of stunt men who became interested in aerial refu-

eling. The Key brothers extended flight in 1935 provides an example of the length

daredevils went to prove their machismo and the ability of planes to remain aloft semi

permanently. While the brothers didn’t walk on wings they used mid-air refueling

to stay aloft for 27 straight days. During their flight, which remains a record to this

day, they were resupplied through a primitive hose method 484 times, which clearly

demonstrated the huge potential for mid-air refueling (9). The commercial sectors

use of aerial refueling before World War II expanded through the interest of Shell

Oil Company which owned the major producer of refueling hardware, Flight Refuel-
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Figure 4: Aerial Refueling circa 1923

ing Limited (20). Shell Oil saw the sky as the limit for selling gasoline, and aerial

refueling was used for transatlantic flights and mail routes.

Interestingly, the early demonstrations of the endurance enabled through in-flight

refueling were not enough to see in-flight refueling enter World War II. The air battles

fought in the Pacific would have benefitted through aerial refueling. Also aerial

refueling would have enhanced the ability of the US miliary to attack German land

targets; however, while the Army Air Corps and the US Navy continued research

during World War II, they did not implement any of their aerial refueling knowledge.

An example of how World War II planners dismissed the idea of in-flight refueling

was shown through their insistence that the military gain a foothold on Tinian Island

in the Northern Marianas. The planners required Tinian so that they could construct

an airfield which would allow the existing long range bomber in the American inven-

tory, the B-2, to reach Japan and return unrefueled. It was not until the advent of

the Cold War and the Nuclear Age that the strategic planning of the military ushered

in the next chapter of aerial refueling.

6



1.3 The Modernization of Aerial Refueling

The atmosphere of fear and suspicion that surrounded the beginning of the Nuclear

Age and Cold War brought forth great advancements in aerial refueling. Before

the introduction of the Intercontinental Ballistic Missile the only way to deliver a

nuclear payload on the Soviet Union was through Air Force and Naval bombers. With

the extreme distances involved in reaching all points within the Soviet Union, aerial

refueling was the only option for returning bombers after dropping their payloads.

This lead to the Air Force demonstrating in 1949 that they could circumvent the

world using aerial refueling (13). The mission, completed by a B-50A, involved 4

refuelings using a wire and hose system. While the mission was a success it still

involved a highly specialized skill set, as it required a harpoon gun to fire linking wire

between the planes, and the refueling was tedious and time consuming due to the

limit on fuel flow through flexible hoses.

Figure 5: Boeing B-50A Superfortress.

Refining the method so that it was both easier and faster was a priority for the Air

Force ,and they found a solution in the form of the American System, developed by

Boeing (20),(9). The American System employed a semi-rigid, telescoping, swiveling

refueling hose mounted to the fuselage of the refueling tanker, and the system also

employed winged control surfaces for greater hose stability. With the American Sys-
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tem the maneuvering required by the receiver plane during refueling was significantly

decreased as greater control of the hose was afforded to the hose operator located on

the tanker. Another improvement of the American System was the rate at which the

fuel was transferred between the tanker and the receiver, which was much faster then

the previous hoses systems. While there have been improvements to the American

System, the foundation of system currently employed was introduced by Boeing in

1948. Since then the major changes to aerial refueling have focused upon tanker

design and fleet size (2).

Figure 6: Lockheed C-5 Galaxy refueling by KC-135 with an Example of a Boom

In addition to improved refueling methods, the Cold War also necessitated a much

larger fleet of tankers with increased capability due to the introduction of the Strategic

Air Command (SAC). SAC was designed with the dual purpose of protecting the

United States borders in cases of imminent attack from the Soviet Union and the

rapid deployment of every asset capable of carrying a nuclear weapon into the Soviet

Union. The greatest problem for SAC involved infiltrating the Soviet air space, since
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the introduction of the jet age made the propeller driven B-29 and B-52 bombers

obsolete as Soviet fighters could easily catch these planes. The Air Force responded

in 1954 by introduced the first long range jet bomber by retrofitting the B-52 with

eight turbojet engines (9). The Air Force tested the capability of the retrofitted

tankers during Operation Power Flite. The operation proved to be a success as it

reduced the amount of time required to circumnavigate the earth to 45 hours, which

was less than half time of the previously held record.

Operation Power Flite also highlighted a major deficiency of the jet powered

tankers. When the tankers were flown outside their optimal speed and altitude they

were highly inefficient. This deficiency was exacerbated by the fact that the air refu-

eling planes at the time were turbo props and therefore required that the B-52s fly

slow and low to refuel. Thus, the planes meant to extend the range of the jet bombers

actually were also limiting the range of a fully refueled jet powered B-52. The next

step for the Air Force was to find a suitable jet powered refueling plane so that the

jet powered bombers could operate efficiently and reach their targets faster.

The competition to produce a jet powered tanker pitted Boeing against McDonnell

Douglas and Lockheed Martin. In the competition Boeing took the early lead as the

company possessed both a design and a working prototype (20). The Boeing design of

the KC-135 Stratotanker was a working prototype which was based on the air frame

of the Boeing 707. Given the urgency of the Cold War the Air Force adopted the

KC-135. However, the KC-135 was adopted as an interim tanker, since even at its

adoption the Air Force leaders had judged the other companies’ designs to be superior

to the Stratotanker.

After adopting the Stratotanker the mission planners were immediately faced with

a tough refueling challenge. The lessons learned from Operation Power Flite showed

the planners that for optimal deployment every B-52 produced would require a tanker

in a one to one ratio. The rapid production of the B-52 in the mid 1950’s necessitated

the equal production of jet tankers so the KC-135 dropped its interim status and

became the tanker of the United States Air Force. At the end of the production of
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the B-52 and KC-135 in the mid 1960s, 732 KC-135’s had been produced and stationed

around the United States. In spite of being judged the inferior design the KC-135

represented the introduction of the modern aerial refueling fleet for the US Air Force.

The KC-135 has proven to be an incredibly durable airframe and continues its service

in the US Air Force inventory today with avionics and engine retrofits. While other

refueling platforms have been introduced, it was in the late 1950’s that the modern

equipment and methods of aerial refueling were finally introduced. However, it would

take a change in a different type of technology for the modern aerial refueling mission

to come into existence.

SAC depended heavily on the KC-135 for refueling long range jet bombers and

fighters until the requirement of long range bombers changed drastically with the

introduction of the ICBM. The reduction of the importance of the long range bomber

curtailed the strategic need for jet tankers and their refueling capabilities. The mission

of the aerial refueling fleet languished until the Vietnam War and a refocusing of the

scope of the aerial refueling capabilities. Before the war the aerial refueling doctrine

focused upon fueling bombers and fighters on their way to engagement and on their

return from their engagement. In Vietnam, the mission of combat support was added

as planes low on fuel during missions would refuel over the skies of Vietnam and

resume their missions (20). This change was a shift in ideology from each receiver

aircraft being paired with a specific tanker to the idea that each tanker could support

a variety of planes and missions in a combat environment.

The Vietnam War also saw the first use of the hose and drogue system for refueling

receivers. The hose and drogue system varies from the American System, also known

as the boom system, in that there is a flexible hose with a cone attached which is

dragged behind a tanker. With the hose and drogue system the receiver aircraft must

fly their refueling point into the cone. Before the Vietnam War the hose and drogue

system was implemented by the US Navy for its fighters and its helicopters and was

used by the Navy’s small refueling platform: the KA-3 tanker. As shown in Figure

7, the flexible hose can accommodate varying platforms such as helicopters while the
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fixed boom can not.

Since the Navy’s planes were designed to accept the hose and drogue and not the

boom system, the Air Force tankers could not refuel Naval assets. Additionally, the

Air Force tankers where prohibited by SAC from refueling any non Air Force planes.

However, ingenuity reigned the day and Air Force tankers frequently refueled Navy

fighters (9). The tankers did so in indirect manner, as they could refuel KA-3 tankers

with their boom system and the KA-3 would simultaneously or subsequently refuel

Navy fighter/bombers with their hose and drogue system. Since the Vietnam War,

as intra service cooperation has improved, the system of indirect fueling has been

replaced by Air Force tankers being both boom and hose and drogue capable.

Figure 7: Example of Hose and Drogue

After the Vietnam War there have been exciting examples of how aerial refuel-

ing allows the prosecution of warfare and limited strikes on targets without forward

basing. These examples laid the foundation for the creation of the modern mission

capability. The first example of a long distance strike on a foreign target was per-

formed during the British attack during at attack on the Falkland Islands in 1982.

The British operation dubbed “Operation Black Buck” was a series of six long range

bombing missions performed by the Royal Air Force Vulcan long range bomber(1).

During the first mission two Vulcan aircraft were deployed from Wideawake airfield

on the Ascension Islands more the 3,900 miles from their target at Port Stanley, Falk-
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land Island. The Vulcan bomber developed in 1960, was designed to carry nuclear

weapons within the confines of European soil and was therefore not suited for the long

distance this mission required. With a quickly devised refueling strategy the Vulcan

took off with a complement of eleven refueling aircraft. During the outbound flight

the Vulcan was refueled five times, but more impressively there was tanker to tanker

refueling which allowed the refueling procedure to cross the Atlantic. On the inbound

flight the Vulcan only required one refueling which was all the tankers could provide

as all the planes barely had enough fuel to return to the Ascension Islands. At the

time of the attack the missions of “Operation Black Buck” were the longest combat

mission flights in history and showed that, if necessary, in-flight refueling could allow

aircraft to strike anywhere in the world. Figure 8 shows both the distances involved

in refueling the Vulcan as well as the complexity of the refueling operations which

included both tanker-receiver and tanker-tanker refueling.

Figure 8: Operation Black Buck Refueling Schematics (22)

The United States also demonstrated its ability to prosecute long distance attacks

using aerial refueling when it struck Libya after the acts of terrorism perpetrated by
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that state and its leader Muammar al-Qaddafi. While the British used eleven tankers

to support one Vulcan bomber (1), the United States was able to limit that number

through the use of the new KC-10 tanker.

The KC-10 Extender tanker was brought into service in 1981 and its capabilities

far exceed that of the KC-135. The KC-10 has twice the fuel capacity of the KC-

135, can employ both boom and hose and drogue systems, and can receive aerial

refueling. The long distance strike against Libya (Operation El Dorado Canyon) was

necessitated by the French refusal to grant overfly rights and thus direct routes against

Libya were not an option from current US air bases (20). In a mission requiring much

planning, the US took off from Mildenhall Air Force base in the United Kingdom

with 24 F-111 fighters supported by 19 KC-10s which were subsequently supported

by 10 KC-135s. The operation proved a success and showed that the United States

could use aerial refueling to support rapid strikes on foreign targets with a mass of

force, in addition to the missions previously defined.

1.4 Modern Aerial Refueling and the Future

The last 15 years have presented unique challenges to the aerial refueling commu-

nity that could have never been anticipated by the first wing-walking refueler. The

enormity of the missions flown in Operation Desert Storm placed challenges on the

tanker fleet never before faced and highlighted the shortcomings of aerial refueling

in a modern war. Additionally, while prosecuting targets in Afghanistan during Op-

eration Enduring Freedom, aerial refueling faced the challenge of incredible mission

distances and large mission loads.

1.4.1 Desert Storm and Enduring Freedom

Operation Desert Storm utilized both the combat operations and long distance sup-

port roles of aerial refueling. In 1990, when Iraq invaded Kuwait and massed on the

Saudi Arabian border, there was a need for rapid deployment of troops and material,
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as well as a rapid response with military force against Iraq. While the internationally

imposed deadlines for Iraqi withdrawal drew near, the United States created an “air

bridge” to transport material and troops across the Atlantic and Pacific Oceans (12).

These “air bridges” were actually C-5 and C-141 transport planes supported by over

100 tankers that transported required manpower and material from Europe and the

United States to the Saudi Arabian airbases. The “air bridge” concept was successful

because of the ability of tankers to refuel planes enroute without having to reroute

loaded transport planes on longer routes that would have required the downtime of

landing to refuel.

The United States also incorporated its improved concept of supporting long dis-

tance strikes during Operation Desert Storm. After the deadline for withdrawal

passed the United States sent seven B-52 bombers loaded with cruise missiles from

Barksdale Air Force Base in Louisiana (10). The seven planes refueled four times on

the way to bombing targets in Baghdad which to that point was the longest strike in

history.

The third and most integral part of the refueling mission in Operation Desert

Storm focused on the combat refueling role played in and around the Iraqi airspace.

The first conflict in Iraq involved the most tankers of any operation in history; which

when combined with the number of sorties and the relatively small theater of oper-

ation constituted a major restructuring in how refueling was conducted (14). The

close proximity of Saudi Arabian air bases where the tankers were forward based,

along with the air superiority gained in the first weeks of the war, allowed tankers to

work as an active refueling point for many receiver aircraft from both the Air Force

and the Navy. In this role the tankers were able to get on station quickly, offload a

maximum amount of fuel, and subsequently return to base and refuel themselves in

a compressed time frame (14). This had not been the case in Vietnam when combat

refueling was in its infancy or during the other long range escort refueling missions

such as Libya. While theoretically the quick turn around time and the large amount

of fuel that tankers could offload would be a boon to efficiency of missions and tanker
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usage, this was not the case.

Figure 9: The skies above Iraq - Operation Desert Storm

While the aerial refueling assets contributed mightily to the success of the air cam-

paign, several studies by RAND and the GAO highlighted the shortcomings of the

aerial refueling campaign. A GAO report states that “because of the finite amount of

Saudi Arabian airspace and the large number of missions being supported each day,

tanker refueling operations were frequently constrained by congestion” (15). Obvi-

ously that statement is of great concern as through improved efficiency comes the

ability to prosecute a war more effectively. The questions posed were “why were

there so many tankers in the air” and “were all the tankers required?”. The GAO

found that on average over 40 percent of the fuel a tanker took off with was unused

by the end of the mission. They stated that the inefficiency of the operations limited

additional combat missions since it appeared as though tankers were being assigned in

the most conservative manner possible (15). The conservative approach of assigning

tankers as needed to missions without regard for future needs or the current inventory

of tankers in the air drew the ire of the RAND study which stated: “In the absence

of automated planning tools, planners used planning factors to estimate the number

of tankers in order to ensure mission success . . Better planning tools and train-

ing could conceivably result in great savings in required tanker sorties during major

operations.” (11). While a GAO study found that fuel returned to base decreased

throughout the war due to better planning and utilization of assets in the sky, it was

not due to official policy changes but rather operational planners learning on the job;
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however, as the war finished this knowledge retired with the planners. While the war

was a success and the capabilities enabled by aerial refueling played a major role it

also highlighted shortcomings in the planning abilities of operational planners.

Iraq(1991) Kosovo(1999) Afghanistan(2001-02) Iraq(2003)
Aircraft 306 175 80 185
Sorties 16,865 5,215 15,468 6,193

Flight Hours 66,238 52,390 115,417 NA
Sorties/Hour 3.9 10.0 7.5 NA

Receiver Aircraft 51,696 23,095 50,585 28,899
Fuel off-loaded(lbs) 800.7M 253.8M 1,166M 376.4M
Av Fuel Sortie(lbs) 47.5K 48.7K 75.4K 60.8K

Table 1: Source: GAO analysis of Air Force Data

The latest test of American aerial refueling capabilities came during Operation En-

during Freedom. During Operation Enduring Freedom, the capability of air refueling

assets to help prosecute a war over great distances was severely tested. The distance

traveled to and from targets within Afghanistan rivaled those of the long distance

strikes accomplished in the past; however, they were not single isolated strikes but

rather continuous strikes across the country in support of a war. Given the landscape

and political climate in southwest Asia the coalition assets had to fly from aircraft

carriers distances of over 700 miles or from the British protectorate of Diego Garcia

more than 3000 miles away. Additionally, with the inclusion of the B-2 bomber in the

US arsenal, 30 hour missions covering half the globe were also used for covert opera-

tions (8). The complexity of missions which involved great distances, the continued

need for planes attacking both fixed targets as well targets of opportunity, and close

air support required better planning than ever before. During Operation Enduring

Freedom the sortie rates were in line with the amount in Desert Storm shown in Table

1. However, in Operation Enduring Freedom each offload was nearly 40 percent larger

than those in Desert Storm, and the sortie lengths were much longer and therefore

receivers required multiple refuelings per sortie. The war in Afghanistan highlighted

the reliance of modern warfare on aerial refueling and the current American capacity

to meet that reliance.
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1.4.2 The Future

The US tanker fleet is an aging fleet with major components made up with hold-

over KC-135s from the early 1960s (4). In the past several years there have been

studies researching the need for new tankers with better range, more fuel capacity,

and the ability to refuel more than one receiver at a time (2). These studies have

focused on the aging fleet and the requirements placed on the tanker fleet over the

past 15 years. Adding the ability to refuel multiple aircraft simultaneously through

multi point refueling stations is a way to get around the under-utilization of tankers

from the first Gulf War. The possibility that a future belligerent nation will be a

long distance from any forward base or the ocean highlights the need for both more

tankers as well as more reliable tankers (3). The government recently signed a bill to

procure a new fleet of refueling aircraft, and in October 2006, the Air Force stated

its goal of procuring 450 converted Boeing 767s (21); however, military procurement

is a notoriously slow and uncertain proposition. While the need for tankers is not

diminishing and may increase over time, the future of any proposed increase to the

service or ability of the current fleet remains uncertain. The one certainty is that at

this time the United States owns a limited fleet of tankers which must be utilized to

the best of their capability. Therefore, to gain future capability from the current fleet

the methods of planning must be optimized.
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Figure 10: 767 Refueling

2 Problem Description

In 2006, the United States Air Force Office of Scientific Research (AFOSR) ap-

proached CASTLE Laboratory at Princeton University to develop an aerial refueling

simulator. The proposed simulator was required to model and plan aerial refueling op-

erations, as well as answer the myriad of questions about optimal tanker placement,

tanker deployment, and optimal receiver refueling. To aid the development of an

aerial refueling model, the current Excel mission planning program in use at AFOSR

was given to CASTLELAB. In the current Air Force model, an operational planner

specifies the type of planes requiring refueling, when the planes need refueling, and

where they will require refueling (refueling locations are referenced as tracks). Given

those inputs, the Air Force model sequentially determines the receiver requirements

and assigns a tanker to a receiver at the receiver’s assigned track. Within the AFOSR

model the refueling tracks are given as inputs. When assigning a tanker to a receiver

the model first determines if a tanker is already at the track and attractive to refuel

the receiver. If the tanker is currently refueling a receiver or low on fuel another

tanker is assigned to the receiver. The model uses a myopic policy exclusively and

does not examine any future values of holding tankers at a track. Therefore, while
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the model is an adequate planning tool it does very little to approach the goal of

optimizing tanker usage.

Given the current AFOSR model, and the requirements that a future aerial refuel-

ing model both plan and optimize, the proposed simulator provided a perfect use for

Approximate Dynamic Programming. Using ADP a simulation package was created

which simulates and optimizes receiver and tanker movements. The current AFOSR

model has the receivers refueling tracks and times as given inputs which limits any

optimization in the system strictly to the movements of the tankers. While optimizing

tanker movements is not a trivial exercise, it can be accomplished through standard

simulation and does not create much value for the mission planners. In CASTLELAB

the problem was approached in a more holistic manner, removing fixed receiver refu-

eling tracks such that both the tanker and receiver movements are optimized within

the system.

Since the CASTLELAB model removes the refueling tracks as a constraint in

the system, a proxy for refueling location was required to guarantee receiver mission

success. The aerial refueling model uses the refueling time as the hard constraint to

determine “when” the mission will be refueled; however, it is left to the model to

determine “where” the receiver will be refueled. The approach used in CASTLELAB

allows for receiver and tanker movements which optimizes fuel usage by both entities.

While the model solves the optimal placements of tankers and receivers it does not

relegate the central goals of the receiver missions: arriving to a target at a specific

time and with a specific fuel load. These constraints are hard coded in the AFOSR

model but in the aerial refueling model they are used as soft constraints which guide

the movements of receivers in the system. By eliminating the hard constraint and

replacing it with a soft constraint it allows the model to optimize behavior while also

fulfilling the receiver mission goals. Also built into the model are tunable parameters

which can further refine receiver movements(ie favoring shorter refueling track to

target movement).

The approach taken in CASTLELAB is general in nature yet specific in prac-
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tice. This allows for the use of proven optimization algorithms and problem specific

requirements. Throughout the thesis, refinements of the model are discussed and fur-

ther possible extensions posed. The model and results shown in the following sections

are powerful demonstration of how ADP is used for planning the refueling of the US

military in the future.

2.1 Approximate Dynamic Programming Method

The aerial refueling problem is formulated as a multi stage model in which decisions

are made sequentially. The problem was approached as a resource allocation problem

which could be solved using Approximate Dynamic Programming (ADP). ADP is an

extension of Dynamic Programming and Bellman’s equation; however, while dynamic

programming requires the enumeration of every state to solve Bellman’s equation

(usually impossible), ADP is an iterative simulation strategy which does not require

the enumeration of all states. During each iteration of a simulation, decisions are made

using knowledge gained from previous iterations and after each decision information

about the state of the system is acquired. The information collected in the form of

marginal cost and value functions is then incorporated with the previous knowledge

of the system, and the accumulated knowledge is used to make decisions in the next

iteration. Therefore, every decision “sees” all previous knowledge of the system and

attempts to minimize(maximize) the cost of the decision to find the optimal solution.

The specifications of the model and how information is gathered and incorporated

are described in great detail for both the general ADP framework and the aerial refu-

eling model. The description of the ADP framework follows the guidelines set forth

in Warren Powell’s forthcoming Approximate Dynamic Programming text (17). The

following sections highlight the specifications of modeling in ADP and the algorithmic

strategy used in creating the aerial refueling model. Topics discussed include: mod-

eling resources, the decision variables and functions, the measurement of the state

of the system, how the information process in structured, the transition of resources

within the model, a general overview of policies guiding model behavior, and how the
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system is measured at a single point in time which includes the objective function of

the model.

2.2 Why Not Dynamic Programming or Linear Program-
ming?

When looking at the optimal assignment of tankers to receivers from a perspective

of 10,000 feet, the approaches of linear programming or dynamic programming ap-

pear to be reasonable methods to solve the aerial refueling problem. Using a linear

programming formulation, a series of sequential networks with receivers acting as the

demands and the tankers providing the supply nodes could be set up. This schedul-

ing approach is used in Chemical Engineering where different processes occur in time

and one reaction ending must coincide with the beginning of the following process.

However, upon coming down from the high view and drilling into the actual demands

of the problem, the shortcomings of the network approach are obvious. Using linear

programming the assignment of two tankers and two receivers to two tracks is not a

daunting task on the surface. However, the complexities of the system inherent to

nonlinear cost which are not readily apparent make solving the problem much more

difficult.

When refueling receivers, the cost associated with refueling two receivers by a

single tanker is different than having each receiver getting refueled by their own

tanker. This is due to the cost associated with queuing which can occur in a simulation

and must be incorporated into the overall cost. Therefore, for this simple problem

the cost of having a different tanker for each receiver as well as the cost of having two

receivers assigned to one tanker must be explicitly calculated. Additionally, the cost

of moving the tankers to and from each track, and the cost of moving the receivers

to each track and then to their target all have to be calculated to obtain the cost of

having tankers and receivers at various tracks.

In this small example if the two tankers and two receivers are identical then the
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permutations of the cost can be calculated, but if the tankers as well as the receivers

are different then the problem becomes increasingly complex as multiple simulations

would be required. Also, many constraints to the system such as maximum queu-

ing time per receiver and refueling rates for each tanker/receiver combination must

somehow be incorporated. When examining the problem at a lower level it becomes

apparent that a network approach is not feasible to solve the problem with all of

its built-in complexities. While alternative approaches such as branch and bound

strategies could be implemented, there is not a simple linear programming approach.

The examination of dynamic programming is very similar to that of linear pro-

gramming in that when viewed from a high level it appears to be a reasonable ap-

proach. The shortcomings come in very quickly with a phrase familiar to individuals

versed in dynamic programming: “the curse of dimensionality”. For those unversed

in dynamic programming the following explanation of the curse will quickly make

apparent why a strict dynamic programming solution is not feasible.

If an individual is standing on a street corner, and will flip a coin twice to determine

if he will go north one block, east one block, west one black, or south one block, a

transition matrix for the location of the individual in the next period can easily

be determined. After the first period the individual flips the same coin again and

makes the same decision. Again a transition matrix could be used to determine the

probabilities of the man’s final location. After the second period the individual could

be in any of 9 different positions as shown in Figure 11:

Making the assumption that ending up at each location has a path dependent cost

associated with it such that moving east/west does not have the same cost as moving

west/east despite ending at the same location. This is a reasonable assumption given

the following example: If the individual is at the top of a hill when at the center

position and they move east with their first move they move down the hill; however

if for their first move they move west they remain on flat terrain illustrated in Figure

12 then there are 9 locations possible and 16 costs associated with the two moves
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Figure 11: Locations for One Stage and Two Stage Move

Figure 12: Example of Path Dependence

(Cost shown by Equation 1).

cost matrix=

(1stmove/2ndmove) north south east west
north nn ns ne nw
south sn ss se sw
east en es ee ew
west wn ws we ww

(1)

To measure the system and determine the state of the system after two moves,

the 16 costs associated with the moves are required but not the 9 locations which are

implicitly given in the cost. If the example was extended to include more realism,

such as knowing if the individual moving is a man or women as well as their age,

then to measure the system those factors would have to be included. Including that

the individual could be a man or a women as well as any of 50 ages, the space which

could possibly be reached and must be enumerated grows to 16(movement− cost) ∗

50(ages) ∗ 2(sexes) = 1600(states). As shown in this brief example is easy for the
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state of the system to become incredibly large by adding complexity to the system,

and thus dynamic programming methods get bogged down for all but the smallest

problems. In the aerial refueling problem the complexities far outstrip the given

example and it would be computationally intractable to enumerate all the states of

the system. Therefore, while dynamic programming provides the backbone for the

problem it cannot be used directly.

2.3 Bellman’s Equation - The Foundation

The foundation of ADP lies with a series of dynamic programming equations known

as Bellman’s equations:

Vt(St) = maxxt∈XtE {Ct+1(St, xt) + γVt+1(St+1) | St} . (2)

Bellman’s equations focus upon making decisions, xt, at a distinct time epochs

using both the immediate associated cost of the decision, Ct+1(St, xt), and any future

value associated with that decision, γVt+1(St+1). Within Bellman’s equation is the

idea of the “state” of the system, St, which is used to compute both current and

future values. A “state” as defined by Powell as

“the minimally dimensioned function of history that is necessary and suf-

ficient to compute the transition function, contribution function and the

decision function.” (17).

For the aerial refueling model, the state of the system includes all the information

about the tankers and receivers in the system at a given point in time. At time t

the state of the system is measure of where tankers and receivers are located, the

fuel levels/demands of the tankers/receivers, the refueling times associated with the

receivers as well as any currently occurring movements of the tankers in the system.

The state of the aerial refueling model is an all encompassing variable which provides

the knowledge of what is happening throughout the system.
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Bellman’s equation, while elegant, suffers from the three curses of dimensionality

which limit its usefulness in practice. The state space is the first curse since even

in small problems with few resources the state space grows exponentially with the

addition of more resources. The state space has dimensionality of |A| which in the

aerial refueling model is a combination of all the attributes of a tanker. The attributes

of the tanker which are further refined in section 2.4 include the tanker’s fuel level,

location, base, id number, and other important aspects of the tanker required in the

model. The second curse is the action space which incorporates the decision sets of

the system, xt ∈ X , as well as the state space. The action space is a function of

both the state space A and the decision space D (The decision space is the set of all

decisions possible). The size of the action space is a vector of dimension |A| ∗ |D|

which is incredibly large in all but the smallest of problems. The last curse is the

outcome space which is |A|+ |B| dimensioned where B is defined as the information

space.

While solving dynamic programs using Bellman’s equation proves intractable for

all but the smallest problems, through manipulation the equation provides the basis

for solving problems using ADP. One of the major hurdles in solving Bellman’s equa-

tion is the expectation, E {Ct+1(St, xt) + γVt+1(St+1) | St}, which cannot be solved

except for small deterministic problems! To solve Bellman’s equation a recursive

strategy is used which eliminates the expectation and uses sample realizations (17).

As a primer for approaching the following series of equations, those unfamiliar with

pre and post decision states, resource states, or value functions should skip to the

next several sections 2.4-2.6 where they are described.

Solving the optimal policy in Bellman’s equation is done by breaking the equation

into two steps and applying a recursive strategy. The two steps of the recursion are

set up as follows:

V x
t−1(S

x
t−1) = E

{
Vt(R

M,W (St, Wt+1)) | Sx
t−1

}
(3)
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Vt(St) = max
xt∈Xt

[
C(St, xt) + γV x

t (RM,x(St, xt))
]
. (4)

The second equation is substituted into the first which produces:

V x
t−1(S

x
t−1) = E

{
max
xt∈Xt

[Ct(St, xt) + γV x
t (Sx

t )]|St−1]

}
(5)

In equation 5 the post decision state variable is used and therefore the expectation

can be dropped. The last equation can then be solved using a sample realization

Wt+1(ω) from ω ∈ Ω. In this manner the value function V x
t (Sx

t ) is replaced with an

approximate value V̄t(S
x
t ) from a single sample . The decision function can then be

set up and solved:

Xπ
t (St) = arg max

xt∈X

[
Ct(St, xt) + γV̄t+1(S

x
t )

]
. (6)

The decision, xn
t , is identified both for the time period in which is occurs, t, as well

as the iteration, n, of the algorithm. In a large model it is reasonable to take a monte

carlo sample to create the sample path from a space of possible outcomes. However,

within the aerial refueling model the sample path is the receiver missions, which are

established prior to the start of the simulation and followed while stepping through

time. In solving the decision function above at iteration n the approximation of a

value function of the state from a previous iteration is used instead of the expectation

of a future state. Therefore, through replacing V̄t(S
x
t ) with V̄ n−1

t (Sx
t ), where n − 1

denotes value function approximation from the previous iteration, the equation can

be explicitly solved.

2.4 The Attribute Space of Aerial Refueling

The attributes of the model are important in explaining its evolution and its cur-

rent state. The vocabulary of dynamic resource management is used throughout the

model description (17). Within this framework tankers are “resources” and receivers

are “tasks”. The attribute vector, a, defines the state of a single tanker resource.
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The tankers are defined by a collection of attributes which are both numerical and

categorical.

a =



a1

a2

a3

a4

a5

a6

a7


=



Location
Base
Fuel Level
Tanker Type
Usage
ID
BeenUsed


∈ A

A = Set of all possible tanker attributes a.

The categorical attributes such as Tanker Type and Location are easy to enumerate

since they come from a predefined set. However, for a continuous attribute such as

fuel level it is not possible to enumerate all values. The attribute space of a tanker

is used to define the value of a tanker, and it is incredibly difficult if not impossible

to value a continuous attribute space. As an example, for a tanker at a refueling

track, is it important to make a distinction between a tanker having 100,000 lb of

fuel or 105,000 lb? The answer for the model is no, it does not matter for such a

small difference, but if the difference were 50,000 lb of fuel then there could be quite

a large difference in the value of the tanker. While the attribute space is defined as

continuous, when the values of tankers are computed the continuous attributes are

discretized and the continuous attribute space becomes a discrete attribute space.

The set spanning all possible attribute spaces is referenced as A.

The receivers “tasks” also have attributes vectors:

b =



b1

b2

b3

b4

b5

b6

b7

b8


=



Type
Track Arrival Time
Track Exit Time
Mission Number
Type
Base
Offload
Target


∈ B

B = Set of all possible receiver attributes b. .

However, in the model the receiver attribute space, B, is not used to estimate the
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value of the system being in a state. While it is possible to estimate the value of

having a receiver in the system, the model subordinates the receiver movements to

the tanker movements. The value of a receiver in the system is conditional upon

the tanker movements. The receiver movements in the system are guided through

a policy which uses the location of tankers in the system. When there are multiple

tankers at different tracks, each receiver is assigned to the track which minimizes its

individual distance to the track and subsequent movement to its target. Since the

tanker locations and quantities determine where receivers move, due to their policy,

the receiver refueling cost is captured in the value functions of the tankers.

2.4.1 Aggregating the Attribute Space

The tanker attribute space holds all relevant information about each tanker in the

system; however, it is cumbersome to compute the value of each tanker using all

information from the attribute vector. When computing the value of a tanker at a

track, it is obvious that knowing the fuel level is important, but does knowing the

tanker ID have any value? In this model the answer is “no” for two reasons. The

first reason is that the specific ID does not provide any actionable information for

the system. Knowing the ID of the tanker does not tell the system if the tanker is

low on fuel or if it can refuel a specific type of receiver. The tanker ID is extraneous

information when making a decision in the system since it has no impact on the value

a tanker can provide in the system.

The second reason using the tanker ID does not benefit the system is that value

functions created using the tanker ID are too narrowly defined within the system.

If a value function is identified by the tanker ID number, then that value function

is only representative of the value of that specific tanker. Obviously when creating

value functions they should be specific enough to provide actionable information but

general enough so that they can be applied to multiple similar tankers.

Therefore, a value function which uses fuel level is appropriate but a function which
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uses tanker ID is not. Using the fuel level in a value function provides knowledge to

the system since the value function is applicable to all tankers at the time point

with a similar fuel level. While different algorithmic strategies can implement more

or different attributes in determining the value of a tanker, the general form can be

thought of as taking an attribute space, a, and simplifying it when calculating values

of the attribute space. The aggregation function takes a very detailed attribute space

and simplifies it to a more tractable and usable form.

Gg : A → A(g) (7)

The function above is the aggregation function where A(g) represents the gth level

of aggregation of attribute space A. For approximating the value of an individual

tanker in the model the aggregation function a(2) used was:

a(2) =

(
Location

FuelLevel

)
(8)

While it appears that a lot of information was lost due to aggregation, the informa-

tion still exists attached to each tanker. Within the model the attributes such as

base location and tanker ID are not discarded; however, when valuing a tanker the

extraneous information is parsed out so that the value function can be extended to

nearly identical tankers.

2.4.2 Extending the Attribute Space to the Resource State and Time

When modeling time, the attribute vector, a, is indexed by the time period in the

system, t. The notation at identifies the attribute of a single tanker at the time t.

Extending the single tanker example up to the multiple tanker realities of the system

requires the introduction of the resource state variable. When multiple tankers have

identical attributes, the resource state captures the tankers as follows:

Rta = The number of resources with attribute vector a at time t.

Rt = Rta∈A The collection of all resources, A is the entire attribute space.
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Rt is known as the resource state vector.

2.4.3 Pre and Post Decision Resource State

The aerial refueling simulation occurs in continuous time; however, to model the

system it is broken into discrete time intervals. The discrete time intervals allow for

the notion of the resource state in reference to the decision epochs. At a decision

epoch, the decisions, xt, about the tanker movements in the next time period are

made. After the decision, exogenous and endogenous information about the system

is collected in the information state, Wt. The progression of the history process is

defined as:

hT = (R0, x0, W1, R1, x1, W2, ........RT−1, xT−1, WT , RT )

The above formulation is a natural way to make a decision, collect information, eval-

uate the current state, and make the next decision. Within this formulation the

resource state, Rt, is defined as the pre-decision resource state. In the aerial refueling

problem, the pre-decision resource state is used to determine the locations of tankers

and the available actions for the tankers. The aerial refueling problem has the added

complexity of receiver queuing and refueling, and the pre-decision resource state can-

not guide receiver policy movements. If the system only had a pre-decision resource

state, then two decisions about moving tankers and moving/refueling receivers would

have to be made simultaneously. The problem would get very messy since it would

face the impossible task of deciding where to send receivers before the movements

and locations of the tankers are known. To resolve this quagmire, the post decision

resource state, Rx
t , is used as shown in the following history process.

hT = (R0, x0, R
x
0 , W1, R1, x1, R

x
1 , W2, ........RT−1, xT−1, R

x
T−1, WT , RT )

The post decision resource state, Rx
t , “sees” all the information of the pre decision

resource state and the decision xt. For the refueling model this simplifies the decision
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making process for the tankers and subsequently the decisions about the receiver

movements. At time t the tanker movement decisions are made, which transforms

the resource state vector from Rt to Rx
t . Within Rx

t is the explicit knowledge of the

actions during the following time period t + 1, and the post decision state variable

provides actionable information to the system. When Rx
t is known, the actions of

the tankers during time period t + 1 are knowledge to the system. Tankers at tracks

which are being held at a track for period t + 1 are seen by receivers arriving to the

system during time interval (t, t + 1]. The receiver movement decisions policy guides

the receivers to tracks with tankers and the problem of simultaneous decisions making

disappears. The pre and post decision states will be used throughout the rest of this

thesis, with the post decision always denoted by superscript, x.

2.5 The State Variable

As defined earlier, the state variable holds the information necessary to compute the

transition, objective, and decision functions. The state variable at time t is defined

as St, but what is contained in St? In the general framework of ADP the state vector

is a composite of the resource state and the demand state, Dt. The demand state is

the state of all the receiver missions entering the system at time t.

St = (Rt, Dt).

Once again the aerial refueling model has the added complication that decisions are

not made solely at decision epochs, but also within time periods. This leads to the

complication of when to measure the state variable. For the sake of clarity, the state

variable will always be measured at the decision epoch. Another complication of the

model is that demands do not disappear if they are not satisfied. The unsatisfied

demands from previous time steps remain in the system until they are satisfied (ie

receivers will not simply disappear if they are not refueled in a single time period). To

illustrate the process which is used in the aerial refueling model, the history process
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below clarifies when the state variable is measured:

ht = (S0, x0, S
x
0 , W1, S1, x1, S

x
1 , W2, S3......St−1, xt−1, S

x
t−1, Wt, St).

Within the history process, St is measured just before decisions are made in the model

and sees both the resources and the remaining demands from previous time periods.

The state variable must see the remaining demands so that a decision to move a

tanker to base is not made when a receiver is currently waiting in queue. The model

uses the state variable to make the decisions, xt, about moving tankers. After the

decisions have been made the demands of the receivers entering the system during

time period (t, t + 1] become known to the system. As the receivers arrival to the

system become known, a second set of decisions is made about receiver movements.

In the history process, the exogenous information process Wt+1 is a measure of two

exogenous information processes: the update of the attributes of the tanker (ie fuel

level), and new receivers entering the system.

R̂ta = The change in the number of tankers with attribute a due to infor-

mation arriving during time interval t. Within time period t the

tankers can be in use, refueling, or recently released from fueling a

receiver.

D̂tb = The change to the receiver missions with attribute b during time

period t due to refueling or entering a queue.

Within the system Wt = (R̂t, D̂t) is used as the generic variable for new information

that arrives in time period t. Implicit to the information process for the aerial refu-

eling problem are the receiver movements which are guided by a policy which uses

Sx
t . Additional new information within Wt is a tanker/receiver fuel level alteration,

tankers moving from a previous time period reaching its location, or receivers entering

a queue and being assigned new expected refueling times t′ > t.

Therefore, in the aerial refueling model the state variable is not simply the resource

and demand state at time t. Rather it is a composite of the resource state at time t
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and the demand vector from time period t as well as the information process of the

system.

St = (Rt, Dt)

= SM(St−1, xt−1, Wt)

= SM,W (Sx
t−1, Wt)

2.6 The Decision Sets

In a traditional resource allocation problem there is a single layer of decisions which

are made at decision epochs. However, as alluded to previously when discussing

the state variable in the aerial refueling model, the decision process for each period

consists of sequential decisions. The first decision concerns the movement of tankers

and the subsequent decision the receiver movements. For the aerial refueling model,

the first set of decisions at the decision epoch create the second decision set and are

therefore more important. Additionally, the first set of decisions are formulated as

a linear programming network at each time period which use the value functions to

make decisions as guided by Bellman’s equation. The decisions for the tankers are

set up as follows:

d = An elementary decision which will act upon a resource (Moving or

Holding a Tanker)

D = The set of all possible decisions. (Move Tanker to Track, Hold Tanker

At Track, Move Tanker to Base, Hold Tanker at Base)

Da = The set of all possible decisions that can act on a resource with

attribute a.

The composition of Da is defined by the location of a tanker and whether it is refueling

a receiver at the decision epoch. Tankers that are currently refueling a receiver are

not allowed to stop refueling to make a separate decision but rather will complete
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refueling and have the singular decision of Hold Tanker At Track. Also, a tanker at a

track does not have the decision to move to an adjacent track, but rather its decision

set consists of holding at the current track or returning to its base. Further refining

the model and the decision sets:

xtad = The number of times decision d is applied to resource with attribute

vector a. In the aerial refueling problem there are often several

tankers with identical attribute vectors such as a KC-135, with full

fuel, at base available for use.

xt = (xtad)a∈A,d∈D

Xt = The set of all possible actions, xt, at time t

At each time period the model is set up as a myopic linear program shown in

Figure 13, which produces the following constraints:

∑
d∈D

xtad = Rta ∀a ∈ A,∑
d∈D

xtad = ltad

xtad ≥ 0 a ∈ A, d ∈ D.

The first equation is the flow conservation constraint which guarantees there are

equal tanker decisions and tankers available. The second equation guarantees that

there are not more decisions made than a specified upper limit ltad. Xt is the set of

all feasible solutions xt to the above constraints. The decisions xt are determined by

a decision function.

While Figure 13 shows the general network of the tanker movements, it leaves out

a very important aspect: why would the tankers move? Figure 14 introduces value

function approximations which help to explain what the linear program is trying to

maximize and why tankers move.
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Figure 13: Myopic linear program

When a tanker moves from its base to a track, it accrues a negative cost (fuel

burned); however, there are rewards for a tanker at a track such as refueling receivers

which would otherwise fall from the sky. At each refueling track node there are associ-

ated value function approximations which represent the positive values of refueling a

receiver at that track. The value function approximations will be discussed further in

section 2.9; however, it is easy to think that each arc of the value function represents

the positive value of refueling a receiver or group of receivers with varying numbers

of tankers.

2.6.1 The Receiver Policy Decisions

The receiver movements within the system are guided through a decision policy. The

receiver decisions occur after the decision epoch and are dependent on the tanker
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Figure 14: Myopic linear program with value functions

decisions, xt. After the tanker decisions have been made, the receiver demands are

introduced into the system:

Dt = (Dtb)∈B = The set of all receiver demands.

Dtb = The number of receiver missions of type b.

When the demands are introduced, the decision set for the receivers is created

through a predetermined policy. While the tanker decision set is solved through a

linear program, the second decision set is constructed through a previously created

policy function. The policy is constructed such that the receivers entering the system

must move to the set of available tracks which have tankers while minimizing total

distance traveled.
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Y = The set of tracks.

y ∈ Y = Particular track.

cby = Cost of assigning receiver with attributes “b” to track “y”.

The set of all tracks is further divided into tracks which currently have a tanker.

Receivers cannot be assigned to tracks without tankers. Therefore, the set of all the

tracks is looped over to find the subset with tankers.

Y ′ ⊂ Y = Subset of all tracks which currently have a tanker.

Y ′ =
∑

y∈Y y ∗ 1tanker,y

If the subset of tracks with tankers is empty then the receiver missions are recorded

as failures in the system. If the subset is not empty, the receivers are assigned to the

track which has the lowest associated cost.

yr = Track chosen for receiver r.

yr = arg miny∈Y ′ Cby

Once the receivers have been assigned to their respective tracks, the model sequen-

tially assigns them to the available (not currently refueling) tankers at the track. If

all tankers at a track are refueling other receivers then the model sequentially assigns

the receivers to the queues of the refueling tankers.

2.7 Transition Function

During the simulation both the resources, Rt, and demands, Dt, evolve over time.

The evolution of the demand focuses on the assignment of receivers to tracks and

their refueling. The resource vector, Rt, evolves from endogenous and exogenous

factors. The first factor in resource state evolution is due to decisions (Move Tanker

to Base, Hold Tanker on Track..). The resource state after a decision has been made
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is called the post decision resource state Rx
t . This post decision resource state is

an important aspect of the model since it determines the availability of the tankers

to refuel receivers at a track. Endogenous information about the resource state, R̂t,

arrives to the system in the time period t−1 to t. An endogenous information process

occurring in the model is the depletion of fuel from a tanker when it is refueling a

receiver. There are also exogenous events that effect the resource state; however, their

notation varies slightly.

To illustrate the evolving states of the system, a single tanker at the attribute

level will be used. At time t = 10, a tanker with attribute vector a10 (which will be

limited to the tanker’s available time, and location) has been assigned the decision to

hold at its track until t = 20. The post decision attribute ax
10 has two consequences

for the system. The first is that the tanker is expected to be available for a new

decision at t = 20, and the second in this multi-stage process is that the tanker is

available for refueling assignments immediately at t = 10 until t = (20− ε). If a

receiver enters the track at t = 18 and is assigned to the tanker then the tanker is

now “in use” refueling the receiver. Assuming that the tanker takes five time units

to refuel the receiver, the new information has changed the attribute vector of the

tanker, â18. When the decision epoch at t = 20 is reached, the tanker no longer has

the attribute vector from ax
10 but rather a transformed attribute vector. The tankers

pre decision attribute vector a20 now has the tanker available at time t = 23.

The first change in the attribute vector(hold at track which determines the tankers

availability time) is a result of the decision made at the epoch. The second change in

the attributes occurs due to new information arriving (the assignment of the receiver

to the tanker and the receivers refueling). The first change is represented in the model

using the function:

ax
t = aM,x(at, d)

38



The effect of the new information on the system is represented by the function:

at+1 = aM,W (ax
t , Wt+1).

In the second function the term Wt+1 represents the new information arriving to

the system in the time period from t to t + 1. The functions ax
t = aM,x(at, d) and

at+1 = aM,W (ax
t , Wt+1) show the physics and the decision making rules of the system.

If a decision acts on the tanker with attribute at, then aM,x(at, d) determines if a tanker

will be available to refuel receivers. As a continuation of the previous example, the

post decision attribute ax
20 has the tanker staying at the track and available at time

t = 23; therefore, aM,x(a20, d) knows when the tanker is available and when it will be

available for its next movement, t = 30.

Extending the attribute vector to the full resource vector, the first transition

function process is:

Rx
t = RM,x(Rt, xt).

The second transition function process is represented by:

Rt+1 = RM,W (Rx
t , Wt+1).

However, in practice the resource vector is often written as a transition equation,

Rt+1 = RM(Rt, xt, Wt+1). Within this model indicator functions are used to facilitate

the ease of movement between the modeling and algebraic realities of solving the

problem. The indicator functions below use the notation of a
′
as the post decision

attribute vector :

δx
a′(at, d) =

{
1, if aM,x(at, d) = a′

0, otherwise

δW
a′ (at, Wt+1(ω)) =

{
1, if aM,W (at, Wt+1(ω)) = a′

0, otherwise
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The post decision transition RM,x(Rt, xt) function is given by:

RM,x
ta′ =

∑
a∈A

∑
d∈D

δx
a′(at, d)xtad

The transition function RM,X(Rx
t , R̂t+1) is given by the post decision state variable

and the exogenous information process that changes the state variable:

Rt+1,a = Rx
ta + R̂t+1,a

Within the model the transition function for the demands plays an important role

and is similar in structure to the resource state. The demand state variable, Dt, can

be represented in two stages with state dependent decisions. The effect of decision

d on a receiver with attribute bt can be represented using functions bM,x(bt, d) and

bM,W (bx
t , Wt+1), which correspond to aM,x(at, d) and aM,X(ax

t , Wt+1) in the dynamics

of the system; however, the decisions are from different sets. As a receiver with

attributes bt arrives in the system, and a decision dt is made to send the receiver

to a track, the receiver is transformed to bx
t . The vector bx

t now has the track and

the refueling time. At time t′ ≥ t, the receiver arrives at its track and is assigned

to a tanker. However, at this point the receiver can enter into a queue and change

the refueling time to t + ε. Such transitions occur frequently in the model and its

important to realize that both the receivers and the tankers evolve over time.

2.8 The Contribution Function

The objective of this model is to minimize total fuel usage by both tankers and

receivers. Since this problem is a two stage process, there is the added complexity

that the second stage contribution function depends on the outcome of the first stage.

The general model for a two stage contribution function is of the form:

Ct = Ct,1(xt,1) + ECt,2(xt,2) (9)

Within equation 9 the first and second stage decisions as well as the first and

second stage contributions are denoted by a subscript 1 or 2. For the aerial refueling
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model the contribution of the first stage is the cost of moving or holding a tanker

which is a known value. The function for calculating the first stage is shown below

and uses the form such that c0ad is the contribution of making a decision d on a tanker

with attribute a in the first stage:.

Ct,1(xt) =
∑
a∈A

∑
d∈D

ctadxtad (10)

The contributions for stage one are deterministic (hold tanker, move tanker) and

are calculated as a function of time spent in the air. Within the aerial refueling model

the second stage contribution function is determined by the first stage decisions.

Additionally, the second stage contribution function for the refueling problem is not

linear or deterministic, but rather must be explicitly calculated through simulation.

The reason for the non-linearity is the queuing within the system. The contribution

of assigning receivers to tankers for refueling cannot be assumed to be linear since as

the queue grows in length, the contribution of assigning an additional tanker grows

in a piecewise manner. The first receiver assigned to a tanker immediately begins

refueling and the contribution is linear with respect to fuel required and refueling

rate. If the next receiver added to the system arrives while the first receiver is

refueling, then it is added to the queue and must wait behind the first receiver before

refueling at the tanker. This process is repeated for every additional receiver added to

the queue. When a queue accumulates from an unfulfilled receiver mission, Dt, and

the incoming receivers, Dt+1, the queue must be simulated to find the contribution.

Figures 15 and 16 illustrate the queuing problem. The table has a single time period.

At the beginning of the period Receivers 1 and 2 are in the queue and Receivers 3

and 4 join the queue in at different points in t + 1. These figures illustrate that the

second stage contribution during time period t+1 is both a function of refueling and

queuing times, and is dependent on the number of tankers at a track. They also show

how receivers entering during time period t+1 can make a second stage contribution

to t + 1 as well as later time periods, as is the case with receiver four.

The second stage contribution function cannot be written in similar fashion as
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Figure 15: Refueling Receivers with 1 Tanker at a Track: Refueling (Green) - Queuing
(Red)

Figure 16: Refueling Receivers with 2 Tankers at Track: Refueling (Green)

the first stage due to the non linearity of the queuing cost. A more representative

function for the second stage contribution is formed by replacing the expectation in

Equation 9 with the explicit cost of the queuing and refueling cost. The cost of the

queues is a scalar value added to the contribution of the decisions xt. The value is a

function of the post decision resource state and the receiver demands represented by:

Q(Rx
t , Dt+1) = The explicit cost of refueling receivers.

The total contribution for decisions xt and period t + 1 is therefore a combination of

the tanker movement cost and the receiver refueling and queuing cost:

Ct(Rt, xt) =
∑

a∈A,d′∈D

ctadxtad + Q(Rx
t , Dt+1), (11)

Q is a function of the post decision resource state (the tankers holding at a track

or in use from the previous period) and the demand state (the queue to which the
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receivers are assigned). In the aerial refueling model the two stages are calculated

separately. The first stage is calculated at the decision epoch t, and the second stage

is computed during the time interval t + 1 through simulation.

While the second stage of the contribution function can be calculated through sim-

ulation, it has the shortcoming at time t in that it cannot see the value of Q(Rx
t , Dt+1),

and therefore any decision made using a myopic policy will not optimize the entire

problem. In this sense it would be nice to replace Q(Rx
t , Dt+1) with an explicit value

or approximation at time t. The value function which is discussed in the following

section solves just this quandary.

2.9 Value Function Approximation

The value function approximation within the aerial refueling model is an estimate of

the cost of the receiver refueling and queuing, Q(Rx
t , Dt+1). The value functions are

iteratively created and updated through simulating the cost of refueling receivers with

varying levels of tankers. Therefore, the value functions are used in the linear program

which incorporates both the explicit first period contributions and the estimation of

the second stage contributions (value function approximation)..

The value functions for the aerial refueling problem are used to estimate at time t

the downstream value of making decision xt. This is akin to the decision a New Yorker

would make about traveling to a coffee shop. If he standing on a street corner and

can walk 1 block west or 1 block east to reach the nearest Starbucks (he is standing

on the only street corner in the city without a Starbucks), which location will he

choose? Assuming that the explicit costs of moving to either Starbucks location are

known to be identical, he is only concerned with the length of the line he will face at

each location. Since he has traveled to both locations many times before he has well

formed estimates of the which location has the shortest line.

Since the exact total time time (contribution) of moving to either location and

waiting in line is unknown at time t, does he just stand on the street corner or make
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a blind guess about which Starbucks excursion will take the least amount of time?

Clearly not, the man walks to the Starbucks he thinks will have the shortest line from

his previous experience. The estimate of how long the wait at the two Starbucks will

be can be viewed as analogous to the ADP Value Function Approximations!

In the aerial refueling model the same rationale as a man standing on a street

corner is used to make the decisions of the tanker movements. When a tanker is

sitting at its base and examining the choice of moving to a refueling track, it uses

the value of being at the track to guide its decision. Within the linear programming

network of Figure 14, the value functions are shown as arcs coming out of the refueling

track nodes. Each arc represents the value of having a tanker at that track during

the time period. The arc representation is used to convey a more general view of the

value function shown in Figure 17, which also shows the value of having additional

tankers at a track. As is shown in Figure 17, the more tankers at a track, the less

valuable each additional tanker is to the system. The figure is slightly misleading,

however, in that it is the slopes of each segment which are important. The slope of

each segment represents the value of having having additional tankers at the track.

Hence for one tanker the value is the slope of the blue segment (1st segment) while

the value of a second tanker at the track is the red segment (2nd segment).

Figure 17: Value Function Approximation
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The creation of the value function for the aerial refueling model is again analogous

to how the value of a traveling to Starbucks was created by the thirsty coffee drinker.

The coffee drinker initially started with no idea of the wait at each location. He

essentially started with an empty function (memory) and through repeatedly traveling

to each location he was able to create a value for each location. The aerial refueling

model also starts with a blank function and no estimation of the value of having

tankers at a location, and it uses derivatives from simulation to fill in the function.

In the first iteration there is no known value of having any tankers within the

system, and when the linear program is solved no tankers move since only negative

cost exists in the system. Since there are no tankers at any of the tracks all receiver

missions which enter the system meet a fiery demise. The goal of the aerial refueling

model is to reduce the cost of the system, and having receivers crash is an unlikely

way to go about optimizing cost in the system. To find the value of having a tanker at

a track at time t, the receiver queuing and refueling is re-simulated with the addition

of a tanker to the track. The cost associated with receiver queuing and refueling

are calculated by the queuing model. The process of adding a tanker to a track and

re-simulating the queuing model is repeated for all tracks so that each track has an

associated value of having one tanker.

To determine the cost (benefit) of having having the additional tanker the dif-

ference between the perturbed and the base simulation within the queuing model is

calculated, which is called v̂n
ta.

v̂n
ta = Ct(R

x
t + ta,Dt)− Ct(R

x
t , Dt) (12)

Within Equation 12 the value function is identified by the timer period and the

iteration of the algorithm.

In the aerial refueling problem once, the value for having an additional tanker

at a location is known, v̂n
ta, it is incorporated as knowledge of the system available

in the next iteration. To incorporate the new information into the previously held

knowledge an updating formula is used. The updating formula incorporates both the
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previously known information from prior iterations and the new information learned

at the current iteration. The updating formula is:

v̄n
t = (1− αn)v̄n−1

t + αnv̂
n
t (13)

Within the value function updating formula the previously incorporated information

from prior iterations is identified as v̄n−1
t . The n− 1 identifies that the value function

is the smoothed updated from the previous iteration. The incorporation of new

information in the value function is guided by the parameter α, which determines the

relative weights placed on the previous information and the new information. Alpha

is called the stepsize in ADP and the properties of α are further discussed in Section

2.9.2.

The updated value functions from time period t and iteration n, v̄n
t , are then

available for use in following iterations to guide the tanker movements. At each

iteration and time step the derivatives are calculated around the number of tankers set

in the base simulation. When there are tankers at a track during the base simulation,

perturbed simulations are run for both one more as well as one less tanker at the

track. The derivatives from the perturbations are used to update the value function

for having both one more and one fewer tanker. When building a value function,

certain states such as having one tanker at a track may be sampled quite frequently

while others such as having five tankers may be sampled only once. For the aerial

refueling algorithm the value function is only updated at the point where sample

realizations occur. More formally:

v̄n
t (r) =

{
(1 - αn−1)v̄

n−1
t,a + αn−1v̂

n
ta , if r = Rx,n

ta

v̄n−1(r) , otherwise
(14)

As the algorithm progresses and tankers are assigned to tracks, the importance of

having additional tankers at tracks lessens. When the number of tankers at a track

reaches a critical mass each additional tanker only decreases the amount of time

receivers wait in a queue for refueling. The value function is a concave monotonically

decreasing function with respect to increasing resources because of the lessening of

the value of each additional tanker. Additionally, since the tankers are indivisible
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units, the value function is a separable, piecewise linear approximation defined by

Equation 15:

V̄t(R
x
t ) =

∑
a∈A

V̄ta(R
x
ta) (15)

where V̄ta(R
x
ta) is a scalar, piecewise, linear function. The scalar, piecewise function

in the aerial refueling model uses the values of the tankers at different track locations

and fuel levels to create a value function, an example of which is shown in Figure

17. The value function for the minimization is concave and piecewise linear given the

assumptions that for Rx
ta = 0 the value function V̄ta(R

x
ta) = 0. Since the value of zero

resources is zero that concave function is completely identified by its slopes, which

leads to Equation 16.

V̄ n−1
ta (Rx

ta) =

bRx
tac∑

r=1

v̂n−1
ta (r) + (Rx

ta − bRc)v̄n−1
ta (dRx

tae)

 (16)

In Equation 16, bRc is the largest integer less than or equal to R, and dRe is

the smallest integer greater than or equal to R. The function is therefore completely

determined by the set of slopes (v̄n−1
ta (r)) for all resources from r = 1, 2, ..., Rmax,

where Rmax is the upper bound on the number tankers of a specific type, which for

aerial refueling is determined by location and fuel level.

In Figure 18 the idea of the slopes is shown as two different types of tankers value

functions overlaid on the same graph. Figure 18 illustrates two different types of

tankers at the same location and point in time. In the figure only the fuel levels are

different between the tankers such that Xfuellevel > Yfuellevel. The figure shows both

the difference in the value of having additional tankers and also the difference in the

value functions of two types of tankers where only the fuel level is varied. When the

fuel level is higher each additional tanker has the ability to offload a greater amount

of fuel and also each additional tanker has a smaller marginal value. As an example, if

there are five receivers at the track with the higher fuel level, the first tanker can refuel

three receivers completely. With the addition of a second tanker all five receivers can

be refueled, and a third tanker makes it so all receivers can be refueled with zero time
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spent queuing. For the lower line (tankers with a lower fuel level) the first tanker

can only refuel two of the receivers as is the case for the second tanker. Therefore

the third tanker refuels the fifth receiver and eliminates any queuing in the system.

Hence, the differences in the slopes shown in the overlayed value functions is due to

the difference in the marginal value of each additional tanker. The tankers with the

lower fuel capacity have a lower value approximation since each of its tankers have

less capacity for work than the high fuel level tankers.

Figure 18: Comparison of Two VFA with Identical Locations and Times but Different
Fuel Level Attributes

2.9.1 Updating and Maintaining the Convexity of the Value Function

When the derivatives of each resource are calculated, the new value is incorporated

into the existing value function for that resource state. As shown previously in Equa-

tion 13, a weighted combination of the new value and the previous value of the resource

state are used to update the segment of the value function corresponding to that re-

source level. Since each value function is constructed from a series of approximations

about the value of having increasing resources, it is not guaranteed that updating the

value function intervals will maintain concavity. Steps must be taken to guarantee

that v̄n
ta ≥ v̄n

ta(r + 1) for all r when updating a value function approximation interval

with a sample value realization v̂n
ta(r) < v̄n−1

ta (r + 1).
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The solution to maintaining concavity of the value function is the CAVE algorithm

(Concave Adaptive Value Estimation). After the new sample realization information

is smoothed into the appropriate interval, the algorithm looks to the left and right

intervals to determine if the new function violates concavity restrictions. If concavity

is violated then the derivative information is incorporated into the surrounding pieces

of the function. The algorithm precedes as follows:

if V̄ n
t,a(r) < V̄ n

t,a(r + 1)than the following smoothing is performed:
V̄ n

t,a(r + 1) = (1− αn)V̄ n
t,a(r + 1) + αnv̂

n
t,a(r)

(17)

if V̄ n
t,a(r − 1) > V̄ n

t,a(r)than the following smoothing is performed:
V̄ n

t,a(r − 1) = (1− αn)V̄ n
t,a(r − 1) + αnv̂

n
t,a(r)

(18)

Equations 17 and 18 are only performed when a concavity violation exists. An exam-

ple of the updating strategy is shown in Figure 19 for a concavity violation. Without

a concavity violation only exponential smoothing occurs (shown in the first three

steps of the figure).
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Figure 19: Convex Value Function Adjustment After a V̂ n
ta

2.9.2 Stepsizes

The variable α plays an important role in updating the value function approxima-

tions. The value of α determines the relative weights placed on sample realizations

iteration by iteration. The stepsize can impact the convergence of the algorithm since

it directly affects value function smoothing. For the aerial refueling model the OSA

(Optimal Stepsize Algorithm) stepsize updating algorithm was used due to its ability

to incorporate stochastic data and adhere to properties of stepsize algorithms which
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are provably convergent. The properties of a provably convergent algorithm are:

∞∑
n=1

αn = ∞ (19)

∞∑
n=1

(αn)2 < ∞ (20)

αn ≥ 0 (21)

A brief explanation will suffice while discussing OSA’s use in the current model;

however, for a more rigorous discussion the reader is advised to reference Mach Learn

(18). The foundation of the OSA is the McClain stepsize size algorithm which is the

following:

αn =


α0 if n =1

αn−1

1 + αn−1 − ᾱ
if n ≥ 2

(22)

Within the McClain stepsize algorithm the initial stepsize α0 is set such that in

early iterations the stepsize adapts in a similar fashion to the 1/n stepsize rule,

while in the long run the stepsize approaches a constant stepsize value ᾱ. The OSA

algorithm uses the McClain stepsize and modifies it such that it reacts to errors in

later prediction with respect to the actual observations. Therefore, while the McClain

stepsize naturally decreases throughout the iterations when it is used in the OSA

algorithm, it can increase as noise increases and the underlying process shifts and

subsequently resumes declining when errors decrease. The behavior of the algorithm

allows it to quickly adapt to high levels of noise while also declining to a set stepsize

ᾱ.

In a stationary process the stepsizes will decrease toward a fixed value as new

data points will provide less and less new knowledge to the system. When the data is

highly variable, as with the aerial refueling model in the first iterations, the stepsize

will remain high to account for the variability of the information contained in the
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sample realizations. The variability in the early iterations of the aerial refueling

model comes from the high cost associated with mission failures and lengthy queuing.

As discussed above, different value functions are created for different fuel levels as

well as locations and times. These value functions do not communicate with one

another and therefore can be susceptible to large differences in values in reaction to

the behavior of other tanker movements.

In an early iteration, if a tanker with a high fuel level and one with a low fuel level

are at a track, the tanker with the low fuel level could be given a low value while the

high fuel level tanker would have a high value. A later iteration when there is only

a single low fuel level tanker at a track without the high fuel level tanker would give

the low fuel level tanker a high value for being at that location. By using OSA the

difference could be incorporated properly, increasing the value of having the low fuel

level tanker, and not mitigated merely because it happens in a later iteration.

2.10 The Decision Function and the Objective Function

Having developed the foundations of ADP and their applications for the aerial refu-

eling model, the algorithmic approach for solving the model can be explicitly devel-

oped. The contribution function as discussed earlier led to the discussion of using

value functions to estimate future contributions. Using the notion of standing at

time t and making a decision, which has a known contribution at t and an future

unknown contribution at t′ > t, the decision function is created. Figure 20 shows the

linear program which is solved at the beginning of each time step. At time step t, the

tankers which are available for movement are the resource nodes. For each resource

node all available actions are created and represented in the network as the forward

arcs. For these arcs the movements associated with going to a refueling track have

value functions. The value functions are represented by arcs, each of which has a

value and an upper bound. This is further highlighted in the movements facing a

single tanker as shown in Figure 21, where the tanker has five different decision arcs

and associated value functions. The decision arc represented without a value function
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is that of holding a tanker at its base which has no positive value or negative cost

associated with the decision.

Figure 20: Single Period Linear Programming Formulation with Value Functions

Figure 21: Node Arc Matrix for Single Tanker with Value Functions

As shown in Figures 20 and 21 the tankers have decisions which will take them
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to both the upcoming time period as well as future time periods. The reason for the

different time periods is the amount of travel time required for a tanker’s movement

from its current location to the various refueling track locations. Additionally, this

means that the contribution function in Equation 11 which was assumed to take the

immediate contribution and the next period’s contribution, is in actuality more com-

plicated than looking one period into the future. A more representative contribution

function for a movement is:

Ct(Rt, xt) =
∑

a∈A,d′∈D

ctadxtad + Q(Rx
t′ , D

x
t′) (23)

In the above equation t′ > t and t′ also represents the last time period before

another tanker decision has been made on tankers moved initial at time t. More

explicitly, since value functions represent the future value of having a tanker at a

location at time t, a tanker “sees” the queuing value previously computed from a

similar tanker at an earlier iteration (similar fuel level and location). While future

contributions are explicitly calculated at a future time period and applied to that

period, they are used in a previous time period to make decisions.

The decision and delayed contribution is very similar to that of filling out a W-

2 and filing taxes. At the beginning of a year an individual can choose to withhold

money for taxes throughout the year or defer any withholding and pay the full tax bill

at the end of the year. While withholding payments or the lump payment happen in

the future at time period t = 0, a decision must be made which is binding throughout

the year. If the lump payment is chosen then throughout the year the tax payments

which have been deferred can be invested in T-Bills. At the end of the year, for the

lump payment option, the contribution to wealth is the difference between the tax

payment and the growth of the invested deferred tax payments which have been in

T-Bills. The contribution to wealth which occurs at time t = 12 is a direct result

of a decision which occurred 12 periods before. Therefore, it is not unreasonable to

say that the contribution from the decision at t = 0 is the immediate contribution

and the end contribution even though it isn’t realized for 12 periods since no other
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decisions have occurred in the interim. While the bank does not record any increased

wealth until the end of the year, it can be assumed by the decision maker to have

happened much earlier. This is how the aerial refueling model works, in that the cost

of queuing is recorded in the total cost of the simulation when it actually occurs, but

the cost of queuing for solving the decision function is associated with the decision in

a previous time period.

For the aerial refueling model to solve the optimal decision, the best policy is

found by searching over the group of policies, Xπ
t (St), and solving the equation:

max
π∈Π

E
T∑

t=0

γtCt(St, xt) (24)

The aerial refueling model uses a simple myopic policy where the contributions

from each individual point in time are maximized. The optimization problem for the

aerial refueling model is represented by:

Xπ
t (St) = arg max

xt∈Xt

∑
a∈A,d∈D

Ct(at, dt). (25)

Solving the optimization problem in Equation 24 for the aerial refueling model

means solving a series of myopic linear programs. The myopic policy is determined

through the linear program which maximizes the linear programs objective function.

Within the objective function the cost of fuel associated with moving a tanker/holding

a tanker at a refueling track are negative values. The value function arcs in the linear

program are calculated as positive values. When the derivatives of having tankers

at a track are smoothed into the value functions the decrease in cost from having

additional tankers is either positive or zero. Therefore, the model looks at the cost of

moving a tanker to a track versus the benefit of having that tanker at the proposed

track and solves Function 25 through optimizing the objective function accordingly.
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2.11 The Algorithm

To solve the aerial refueling problem a forward pass algorithm shown in Figure 22 is

used. The forward pass algorithm uses value functions from the previous iteration

to make its decisions. At the end of an iteration the value functions are updated

accordingly and available for use in the following iteration.

Step 0: Initialization:

Step 0a. Initialize V̄ 0
t , t ∈ T .

Step 0b. Set n = 1.

Step 0c. Initialize Rx
0 (The set of all tankers in the system).

Step 1: Choose a sample realization, ωn. For t = 1, 2, . . . , T , (ω is the deterministic
list of receiver missions in the aerial refueling simulations) do:

Step 2a: Create the linear program from the available tankers and associated
value function approximations:

Step 2b: Solve the optimization problem:

max
xt∈Xn

t

[Ct(R
n
t , xt) + V̄ n−1

t (RM,x(Rn
t , xt))]

Step 2c: Simulate the receiver refueling and queuing to find v̂n
t (Rx

t )

Step 2b: Increment Rx
t ± ε, at all tracks.

Step 2d: Re simulate the queues with the ± ε to find the derivatives which
are v̂n

t (Rx
t (±ε))

Step 2e: If t > 0 Update the appropriate value function using:

v̄n(r) =

{
(1 - αn−1)v̄

n−1
t−1,a + αn−1v̂

n
ta if r = Rn

v̄n−1(r) otherwise

Step 2f: Update the States:

Sn
t+1 = SM,W (Sx,n

t , Dt+1, Wt)

Step 3. Increment n. If n ≤ N go to step 1.

Step 4: Return the value functions, {V̄ n
t , t = 1, . . . , T, a ∈ A}.

Figure 22: An approximate dynamic programming algorithm to solve the aerial refu-
eling problem.
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3 Receivers Falling Out of the Sky!!(Does the Model

Work?)

Having the general framework for the aerial refueling model established, the actual

implementation of the model into a working simulator that will provide reliable,

efficient results becomes the focus of the rest of the paper. What defines whether the

model is optimizing and providing usable solutions? The initial focus is guaranteeing

that the model can quickly and reliably reduce mission failures to zero. Mission

failures occur if a receiver is not assigned to a tanker when it enters the model. For the

model to be usable and provide a feasible solution, mission failures must be eliminated.

In many ADP models, satisfying all demands is not necessary in determining the

validity of the model; however, the aerial refueling model must consistently eliminate

mission failures to be of any value to operators of the model.

Once the model has been shown to consistently reduce mission failures to zero then

the ability of the model to optimize costs is the next goal of the system. The model

is designed to reduce the total cost accrued through tanker and receiver movements

and refueling. The aerial refueling model is expected to have high mission failure

and queuing cost in initial iterations; however, through the use of value functions the

tanker movements should be optimized and lower the cost of a simulation through-

out the iterations. The costs associated with various aspects of the model such as

tanker fuel, receiver fuel, and queuing should be optimized in concert throughout the

optimization without any one cost dominating to the detriment of another cost.

The third goal of the model is to produce reliable results which make sense and are

usable by mission planners. Example of this goal include: reducing total tanker usage

to a minimum and consistent level when given an excess amount of tankers in the

system, reducing individual receivers’ queuing times to acceptable levels, and refueling

receivers at logical locations. The usability of the model for the Air Force requires that

these goals are met, and while the model may be correct in all technical dimensions,

without results which mirror those expected by planners it may be considered useless.
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To achieve all of the goals of the model, the inputs and structure of the model were

required to closely mimic the real world with regards to actions and decisions. The

following sections detail the model-specific attributes of the aerial refueling simulator

which help it mirror the real world.

3.1 Modeling With Realism

The aerial refueling model implements a series of constraints and changeable param-

eters to make the actions of the tankers and receivers more realistic. To model the

tankers, the fuel levels of tankers are accurately updated throughout the simulations.

Additionally, decisions are guided through policies which limit the actions of tankers

as fuel levels deplete. Such a measure includes limiting tanker movements at an

epoch to returning to base immediately if the tanker does not have enough fuel to

stay on station for another time interval and return home with a safe margin of fuel.

Another constraint put on the tankers guarantees that tankers will reject refueling

any receivers that will deplete their fuel to a level which will not allow the tanker

to return home with an adequate level of fuel. This constraint has the dual role of

guaranteeing that tankers return home and also that receivers are not assigned to

tankers that would be forced to return home while the receivers are still waiting in a

queue.

A tunable parameter for the tankers is the turn around time associated with

a tanker returning home to base. Tankers that return to base after refueling are

unusable for at least four hours, which mirrors refueling and crew changes as well

as guaranteeing that one tanker is not expected to be airborne 24 hours straight.

Another added benefit of a long turn around time is that the model is forced to

efficiently allocate and move tankers. When the holding time of a tanker returning

to base is combined with the traveling time associated with returning to base the

tanker leaving its track is unavailable to return to a track for upwards of seven hours.

Therefore, anytime that the model sends a tanker to base it is unavailable to refuel

receivers at a track for upwards of ten hours. By limiting the missions each tanker
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can refuel in a day, the stress on the system was increased and conservatively reflected

how often a tanker can be used daily.

The last major constraint to the system is the refueling time for the receivers. The

refueling time for receivers is an endogenous constraint of the system. The refueling

time for aircraft is set such that there is a margin of error for when the plane can

be refueled; however, with fighter and attack planes such as the F-18 and F-15 the

limited excess fuel carried on board relative to fuel burn rate demands that they refuel

at or close to the specified time. While the goal of the model is to eliminate queuing,

the current Air Force model has a built-in 15 minute window that allows tankers and

receivers to wait before attaching and refueling. The leeway allowed in the current

Air Force model is incorporated into the aerial refueling model by stipulating that

planes incur no penalty for refueling under 15 minutes after their scheduled time and

incur penalties for delays past 15 minutes. By allowing for minimal delays the model

closely mirrors the actualities of refueling while not penalizing the inherent stochastic

nature of refueling times. The penalty as well as the time limit are both exogenous

variables and thus can be adjusted to suit the user’s desires; however, the current

implemented values balance receiver failure and fueling delay cost.

After implementing all of the major required constraints into the system, the

model optimized the aerial refueling problems and did so in a manner that compared

favorably with the current Air Force planning model. In the next section the tunable

inputs and outputs of the model are discussed to guarantee the reader is familiar

with the world of aerial refueling and the inner workings of the CASTLELAB Aerial

Refueling Model.

3.2 The Results

To accurately gauge the success of the aerial refueling model, the current Air Force

model provided by Jim Donovan from AFOSR was used as a baseline. Throughout the

early testing, Mr. Donovan’s Excel-based model was used as guidance on the number
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and location of tankers required to adequately serve all the receiver missions. Once

the number of tankers required to solve the receiver mission profile in Mr. Donovan’s

model was ascertained, the current model results were shown to approach and improve

upon those results. The results from runs of the AFOSR model are in Tables 2 and

3. As discussed earlier, the Excel model’s optimization capability is limited since

it pairs of tankers to receivers in a strictly myopic fashion. Another constraint on

the Excel-based model is that the receiver refueling tracks are endogenous to the

system. Therefore, the AFOSR model is limited because it optimizes only the tanker

movements while taking the receiver movements as fixed inputs. The model developed

in CASTLELAB therefore cannot mimic the results of the AFOSR model. A limited

comparison between the aerial refueling model and the AFOSR model using the

SDS showed the aerial refueling model requiring 16 tankers while the AFOSR model

required 20 tankers. Since a direct comparison of the models was not possible this

baseline test which showed that the aerial refueling model produced similar results to

the AFOSR model is used to illustrate the general validity of the ADP approach.

Simulation Tanker Base Given KC-10A Tankers Used
1 BASE 1 20 20
2 BASE 2 20 20
3 BASE 3 20 18
4 BASE 4 20 18

Table 2: Tankers Used by AFOSR Model for Varying Tanker Inputs

Simulation 10 Tankers KC-10A 10 Tankers KC-10A Used Base A Used Base B
1 BASE 1 BASE 3 8 10
2 BASE 2 BASE 4 8 10

Table 3: Tankers Used by AFOSR Model for Varying Tanker Inputs

After the validity of the aerial refueling model was established in comparison to

the AFOSR model, a series of tests were run on the aerial refueling model to establish

the characteristics and strengths of the model. The results are framed in the context

of producing a usable model for the Air Force, and therefore, some of the tests were
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established to test the usability of the model while other tests were performed to

determine the robustness of the model.

3.3 The Model Inputs

To test the aerial refueling model, two distinct data sets were used which provided

insight into different aspects of the model. The first data set used is a small data

set (SDS) consisting of 4 tanker bases, 4 receiver bases, 4 tracks, and 58 missions.

The second data set (LDS) is a much more complex data set with 5 tanker bases,

14 receiver bases, 19 tracks, and 117 missions. Both data sets cover missions over a

24 hour horizon. The major difference in the complexity of each system involves the

differences in the number of tracks in the sets. The number of tankers and receivers

in the system provide limited computational complexity since only distances traveled

and fuel burns must be calculated. However, the VFA are measured at tracks, and

by increasing the number of tracks there is a direct increase in the intricacy of the

problem as each track must account for a variety of value functions at each time step

to account for different tankers. Therefore, the LDS is a much richer data set than

the SDS, and the results of the LDS can be considered more applicable to the real

world except in a few examples.

To test the LDS, a number of inputs were used to create a base case scenario as

listed in Table 4.

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Base Set 100 25 10,000 2.18 0.6

Table 4: Base Data Set Inputs- LDS

• Iterations-The number of iterations the simulator was run.

• Tankers-The tankers within the system (all tankers are equally distributed

throughout tanker bases during test runs).

62



• Receiver Penalty-The model-specific penalty for a mission failure. Receiver

missions which are not refueled during an iteration are defined as failures. The

Receiver Penalty is also used in the computation of the cost of a receiver fueling

delay. Receiver fueling delay is defined as the time a receiver sits in a queue.

• Fuel Ratio-Importance of tanker fuel usage relative to receiver fuel usage. The

base case is with tanker fuel burn rate set at 14,400 pounds/hr and receiver fuel

burn set at 6,600 pounds/hr, which are values taken from Air Force refueling

manuals. The model therefore initially values a tanker in the air costing 2.18

more per hour than a receiver.

• Movement Penalty-A receiver mission’s distance traveled is broken into two legs

- base to track - track to target. The second leg of the receiver mission costs

more than the first due to the receiver wanting more fuel in the combat zone

on its way to its target and therefore can be penalized.

3.4 The Model Outputs

The outputs measured in the simulations focused on a variety of metrics which are

important to the Air Force planners, as well as statistics which show how well the

model is optimizing. The model outputs for the Air Force focus upon the fuel burned

within the system, the fueling delay encountered by the receivers (queuing time),

the number of tankers used in the system over the complete time horizon, and the

distance traveled by the receivers.

The fuel burned is separated into two categories, the fuel burned by the receivers

and the fuel burned by the tankers in the system. In addition to the fuel used in

the system, the total cost of the system includes the cost of mission failures as well

as total fuel burned. Figure 23 is an illustration of the fuel burned throughout the

iterations for the base LDS simulation. When measuring the system, the solution

is not considered stable if mission failures occur after the initial learning iterations;

therefore, the total cost of the system is only measured when the system is stable.
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When the system is not considered stable, the results will note the instability and the

outputs should be taken with caution.

Figure 23: Total Fuel Used in Pounds for the Base LDS Simulation

The fueling delay is measured with several metrics. The first measure is that of

total fueling delay within the system. This measure is important since it is an indirect

measure of how flexible the system is to added receiver missions and imprecise fueling

times. When the total fueling delay is low, the measure shows that there is little

overlap of assigning receivers to identical tankers at the same time which produces

queuing. Therefore, introducing instability (real world frictions) to a system with low

total queuing would have a lower impact on the system than simulations that have a

large fueling delay. The other measure of fueling delay focuses on the maximum delay

encountered by any single receiver in the system. When the fueling delay encountered

by a single receiver is large, delay > Xminutes, a penalty is assessed to the system

as the receivers do not have a large excess fuel capacity. The model is set to minimize

fueling delay for each receiver and an acceptable delay is defined as lasting under

15 minutes. An example of the optimization of total fueling delay in minutes per

iteration is shown in Figure 24.

The total tankers required in the system throughout the time horizon and the
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Figure 24: Total Fueling Delay for the Base LDS Simulation

efficiency of tanker usage in the system are also measured. The measure of tankers

required in the system is important since it shows the minimum amount of tankers

required in each iteration to produce the given results. Throughout the iterations

the expectation is that the tankers required by the model decrease to a stable value.

Figure 25 illustrates how the base LDS uses all the available tankers (25) for the first

60 iteration before “learning” that it can produce a better solution with fewer tankers.

The aerial refueling model is set up such that if two identical tankers are sitting at

a base and one of the tankers has previously been used (flown to a refueling track

and then back to base) then the previously used tanker will be reused in the model.

The tie breaking rule guarantees that the aerial refueling model uses the minimum

number of tankers required and does not unnecessarily fly previously unused tankers.

The second measure of how tankers are used is the tanker usage efficiency which

focuses on how well the model optimizes the tanker movements in the system. When

a tanker moves from its base to a track, it is moving due to the perceived value

of the move which is from the VFA. However, given that the VFAs are not exact

predictors of the future they can cause moves which have no value. As the algorithm
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Figure 25: Total Tankers Used Per Iteration for the Base LDS Simulation

progresses, unnecessary moves by the tankers should decrease as the value functions

become more refined. The measure of the average number of tankers at a track

during an iteration shows how many tankers the system has moved from base to a

track or are held at a track due to a perceived value of having tankers at the track.

The measure of the average number of tankers unused at a track shows the number

of tankers which were sent to a track and subsequently were not used for refueling

any receivers. The average unused tankers in the system are expected to steadily

decline during the iterations as value functions become more accurate and send the

appropriate number of tankers to the correct refueling tracks. Additionally, as the

average of unused tankers decreases, the average number of tankers at a track will

decrease since tankers are used more efficiently. As shown in Figure 26, in early

iterations there are excess tankers both used and unused at tracks, but during the

later iterations the used tankers reach a steady value and the unused tankers approach

zero as tanker movements are optimized.

The final measure of the system comes through the total objective function cost

associated with an iteration. The total objective function cost is a measure of how well

the model is optimizing the total cost of the system in the linear program. Through
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Figure 26: Average Tankers Used Per Time Step in an Iteration for the Base LDS
Simulation

the iterations, as the value function approximations improve and tanker assignments

become more precise, the objective function decreases. The objective function is a

composite of the contribution from moving a tanker to a track and the value function

approximation associated with that movement. In Figure 27 the initial high objective

value is due to exploration and imprecise value function approximations; however, as

the iterations progress the objective function settles into a stable region which is

around the optimal objective value. In our simulations the optimal objective value is

not computable as the state space is too large. As a proxy, the percentage change in

the objective function between iterations is computed and used to measure of stability

of the model. As shown in Figure 27, the objective function is very stable over the

last 50 iterations.
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Figure 27: Total Objective Function Cost for the Base LDS Simulation

3.5 How Quickly Does the Model Work?

When testing the model, the speed of the convergence of the solution is an important

metric. As stated above, the absolute convergence to a known optimal value is not

possible. Rather, the relative changes in the objective function are used to determine

the stability of the solutions. The stability of a solution is important over a long

horizon in ADP due to the common occurrence of relative convergence. Relative

convergence occurs when an algorithm is run over a short horizon until the solution

appears to reach an optimal solution, but it has in fact reached a sub optimal solution

which would become obvious with more iterations. When examining Figure 28 it

appears that the solution is stable around 40 iterations.

However, when than simulation is extended to 100 iterations, as shown in Figures

29 and 30, the solution and equilibrium of the solution changes quite a bit. The first

figure (29) shows the total cost across all of the simulations and the second figure

(30) illustrates the total cost change between the 40th and the 100th iterations. The

second figure clearly illustrates that the solution improves and converges on a solution

that was not apparent when the simulation was only run for 40 iterations. Therefore,
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Figure 28: Total Cost - Apparent Convergence over First 40 Iterations

it is important to find out how quickly the solutions converge to a stable solution

which persists over an extended horizon.

Figure 29: Total Cost - Apparent Convergence over First 100 Iterations

Using the following inputs for the large and small data sets (Figures 3.5 and 3.5),

the optimal simulation length concerning the trade off between the stability of the

solution and the memory and time required to run the simulations was established.
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Figure 30: Total Cost - Apparent Convergence from Iteration 41 to 100

The differences between the LDS and the SDS in terms of iterations required are due

to the difference in the measured state space of the two data sets. As noted earlier,

the LDS and SDS states are measured at discrete intervals with regard to the location

of tankers, receivers, and the various states of each of the resources and demands.

While the SDS and LDS have similar amounts of tankers, there is a large difference

in the number of locations between the two sets. The LDS has more than four times

the tracks contained in the SDS data set (19 vs 4) and thus the LDS-measured state

space and value functions are more than four times as great as the SDS. Therefore,

the LDS requires more iterations to reach a stable solution than the SDS.

In the aerial refueling model, one state of the world at each time step of an iteration

can be explored. Therefore, in the first iteration the value of having one tanker at

each track is calculated through creating derivatives and updating the associated

value functions. The second iteration uses the value function approximation from the

first iteration to determine where to place the tankers in the second iteration. The

third iteration uses the information gained in the previous two iterations to move

tankers in the system and so forth. When the number of tankers in the system is less

than the number of value functions, there is a limit to the state space which can be
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explored in an iteration, and subsequently a limit to the number of value functions

which can be updated. As tankers attempt to update the various value functions by

exploring the state space, the algorithm is said to be in an exploration phase. With a

large state space (LDS) the exploration phase of the ADP algorithm is much longer

than in a more compact state space (SDS). As shown in the outputs and graphs of

the base LDS (Table 3.5 and Figure 31) and SDS (Table 3.5 and Figure 32) data

sets there is a great difference between the rate of convergence between the two sets,

which is expected due to the difference in the states spaces explored.

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 20 25 10,000 2.18 0.6
Set 2 50 25 10,000 2.18 0.6
Set 3 100 25 10,000 2.18 0.6
Set 4 200 25 10,000 2.18 0.6

Table 5: Large Data Set Inputs - Varying Simulation Length

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 3444314 6023105 1346 14.33 25 8.23 13.08
Set 2 1582003 2691280 437 14.33 25 2.58 7.17
Set 3 1595082 1525753 486 11.33 20 0.50 4.75
Set 4 1583113 1577220 535 11.33 19 0.17 4.17

Table 6: Large Data Set Outputs - Varying Simulation Length

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 20 20 10,000 2.18 0.6
Set 2 50 20 10,000 2.18 0.6
Set 3 100 20 10,000 2.18 0.6

Table 7: Small Data Set Inputs - Varying Simulation Length

For the LDS after examining the tradeoff between the rate of change of the total

cost and the time required the standard simulation run was set at 100 iterations. The

SDS converges much more quickly than the LDS and the standard simulation length

was set at 50 iterations.
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RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 3712778 2315654 434 32 16 .25 4
Set 2 3712778 2315654 434 32 16 .25 4
Set 3 3712778 2315654 434 32 16 .25 4

Table 8: Small Data Set Outputs - Varying Simulation Length

Figure 31: Total Cost for LDS

Figure 32: Total Cost for SDS

72



3.5.1 The Importance of Quickly Obtaining Stable Solutions for the US
Air Force

The US Air Force is concerned with planning missions in a time efficient manner which

can be updated daily if not more frequently. Using data from past engagements of

the United States military, the daily receiver missions during Operations Enduring

Freedom and Iraqi Freedom can reach over 1,000 in a day, as shown in Table 1 in Sec-

tion 1.4. The daily receiver mission rate is therefore eight times larger than the LDS.

A model which requires too many iterations, and therefore computing time, would

be of limited use to the Air Force planners as they must set forth a schedule daily

and be able to deal with uncertainty and change the model as necessary throughout

the day. The amount of iterations required to reach a stable solution in the aerial

refueling algorithm is more responsive to refueling tracks and tankers in the system

than receivers at any given point. Therefore, a model which has a similar structure

and size with regards to available refueling tracks and tankers could be solved in a

similar number of iterations. The time required to run one iteration of the LDS is 25

seconds,which involves invoking a remote linear programming solver (CPLEX) while

using an older desktop machine running at 1.5 GHz. As most machines which would

run this software would be faster than the test machine, there is an expectation that

the scalability of this algorithm to the full data set is not a limiting issue.

Additionally, as will be discussed in much greater detail in Section 4.4, the al-

gorithm can be set up to run in a “warm start” state which uses previously trained

value functions. Therefore, for the LDS a single run of 100 iterations can be used to

train value functions, and the trained value functions can be used to run a similar

data set and produce solid results in five to ten iterations.

3.6 The Value of Tankers in the System

Approaching the aerial refueling problem with the ADP algorithm required the ex-

amination of the solution quality for a series of inputs. The most important input to

73



be able to change while maintaining solution quality is the number of tankers in the

system. The algorithm should be able to use various numbers of tankers and produce

solutions which are similar given the changing tanker inputs.

Differing levels of tankers are able to sample the state space more or less com-

pletely during each iteration due to the availability of tanker resources. However, it

is expected over a long horizon of iterations that all levels of tankers will explore the

state space and create similar value function approximations. The creation of similar

value functions for varying levels of tanker will confirm the validity of the model. It

is important that the varying levels of tankers produce similar results so that that

model is not dependent upon the skill of the operator in determining the number of

tankers required by the system prior to a simulation.

In the Air Force there are established guidelines for assigning tankers to receiver

missions; however, the approach of the aerial refueling model takes a much different

tack. A strength of the model would be that it can optimize the system regardless of

the number of tankers input by an inexperienced user. A naive approach to assign-

ing tankers to the system by an inexperienced mission planner does not focus upon

mission efficiency, but rather is concerned solely with guaranteeing receiver mission

completion. Using a naive approach, the optimal level of tankers is unknown and the

level of tankers assigned to the system will likely be much greater than the required

level of tankers. A model that can produce similar solutions both when an model op-

erator assigns close to an optimal level of tankers as well as when they assign a great

excess of tankers would show the ability of the aerial refueling model to optimize.

Additionally, the flexibility of the aerial refueling model would provide a great level

of usability to operational planners.

Testing both the LDS and SDS with varying levels of tankers, the conclusions

detailed in Sections 3.6.1 and 3.6.2 highlight the algorithm’s ability to optimize with

varying levels of tankers.
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3.6.1 Optimizing With Tankers Assigned To All Tanker-Bases

To test the ability of the model to react to varying levels of tankers, multiple sim-

ulations were run in which differing numbers of tankers were placed in the system

and simulated (all tankers were distributed equally amongst the tanker bases). Ad-

ditionally, the system was set up such that at each tanker base location there was

a virtually unlimited number of tankers, (25). As shown in the base LDS run (Ta-

ble 3.5), the model required 20 tankers to successfully refuel all receiver missions;

therefore, each tanker base location alone could successfully refuel all of the receiver

missions. The test of the model was to check whether the algorithm would be able

to optimize over a larger state space of tankers and come up with a solution which

used a similar number of tankers as the base LDS simulation (20). Additionally, it

was expected that the other output metrics in Table 4 would be similar in scale. As

the results from Tables 10 and 12 show, as the number of tankers introduced to the

system increased the fuel cost and tanker usage statistics were lowered for both the

LDS and SDS when compared to the base simulations.

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 100 15 10,000 2.18 0.6
Set 2 100 25 10,000 2.18 0.6
Set 3 100 50 10,000 2.18 0.6
Set 4 100 100 10,000 2.18 0.6

Table 9: Large Data Set Inputs when varying Tankers

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 3761080 4031937 1974 627 15 5.12 8.38
Set 2 1595082 1525753 486 11.33 20 0.5 4.75
Set 3 1583113 788610 535 11.33 20 .17 4.17
Set 4 1537087 897554 529 11.33 19 .25 4.33

Table 10: Large Data Set Outputs when varying Tankers *note Set 1 is unstable with
mission failures after 100 iterations

The dramatic decrease in the fuel consumption for both the LDS and SDS between

Sets One and Two (Table 10) and Sets Three and Four (Table 12) is due to the model
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V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 50 16 10,000 2.18 0.6
Set 2 50 20 10,000 2.18 0.6
Set 3 50 32 10,000 2.18 0.6
Set 4 50 50 10,000 2.18 0.6

Table 11: Small Data Set Inputs when varying Tankers

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 3721521 2427170 434 36 16 .25 4
Set 2 3712778 2315654 434 36 16 .25 4
Set 3 3730493 1812812 434 36 18 .25 4
Set 4 3730493 1702683 434 36 18 .25 4

Table 12: Small Data Set Outputs when varying Tankers

optimizing movements of tankers from closer tanker base locations. Since there are

more tankers at tanker bases that are close to highly used refueling tracks, the tankers

from the close bases are used and tankers from bases farther away are not required.

The use of more “local” tankers as the tankers at each base are increased explains the

large decrease in the total tanker fuel consumption. Ignoring LDS Set 1 due to its

instability from a lack of tankers, it is clear that for the LDS and SDS simulation runs

the receiver fuel burn remains relatively unchanged among all the sets. The stability

of the receiver fuel burn shows that the assignment of receivers to refueling tracks

is consistent once a critical mass of tankers are in the system. This is consistent

with the approach taken to estimate the value function approximations and receiver

assignment rules.

An interesting and yet counterintuitive result of the simulations is that the receiver

fuel consumption decreases to a stable value much more quickly in the sets with many

tankers than in sets with fewer tankers, as shown in Figure 33 for the LDS. Intuitively,

the data sets with fewer tankers allow less freedom of operation for the receivers, as

they can refuel at fewer refueling tracks, and thus the receivers’ fuel burn rate would

be expected to converge at a faster rate. However intuition is misleading with respect

to the aerial refueling algorithm.
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The sets with greater levels of tankers can more quickly explore a larger section of

the state space in fewer iterations. During the initial “learning” iterations the data

sets with more tankers are able to send tankers to more of the available tracks than the

sets with few tankers. Since tankers are assigned to more tracks, the value function

approximations associated with the “best” tracks are updated more frequently in early

iterations. This is due to receivers having a simple decision function of moving to the

track which has a tanker and produces the shortest distance from base-track-target.

When there are limited tankers in the system some of the “best” tracks will not be

sampled during the initial exploration phase. With a limited number of tankers in

the system there is a constant pull between exploration and exploitation of the state

space. Even with a limited set of resources, eventually the tankers can sample a large

portion of the state space and reach a solution which is similar to the data sets with

greater levels of tankers. Figure 33 illustrates this point clearly since all three data

sets from the LDS converge on similar values, but their rate of convergence varies

greatly.

Figure 33: Receiver Fuel Consumption Comparison with Varying Levels of Tankers
for the LDS

As discussed above, the total tanker fuel burn rate varies greatly since the required
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tankers fly from more favorable tanker bases; however, as shown in Figure 34 there

is more to the solution than simply the distance tankers must fly. The results and

conclusions are similar between the LDS and the SDS, but the LDS more clearly

illustrates the conclusions due to its larger state space. Figure 34 shows the differential

tanker fuel consumption totals between the LDS data sets. For the different sets there

are two distinct phases which are the initial 10 iterations and then the subsequent 90

iterations. Within the first ten iterations it is expected that Set 3 and Set 4 would

send out more tankers than Set 2, and therefore their fuel burn rates would be higher

than Set 2. The graph shows that in the initial ten iterations it is the case that the

sets with more tankers have greater fuel consumption; however, after ten iterations

the set with fewer tankers is burning much more fuel than the other sets. After the

first 15 iterations, Set 3 and Set 4 are approaching their optimal fuel burn rates while

Set 2 is still in its exploratory phase. As discussed above Set 2 has fewer tankers and

thus it takes more iterations than Sets 3 or 4 to explore the state space sufficiently

and determine its optimal decisions. Therefore, it takes Set 2 longer to reach its

equilibrium, and at equilibrium there is the added complication of having to send

tankers from more distant locations so it has a higher optimal tanker fuel burn cost.

Figure 34: Tanker Fuel Consumption Comparison with Varying Levels of Tankers for
the LDS
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The sets with large tanker fleets send most of their tankers from a small subset

of the available tanker bases. With the larger fleets at each tanker base the model

can move all tankers the shortest possible distance without having to pull tankers

from the second choice (longer distance tanker base). Set 2 must move tankers from

multiple bases to fill a demand at a single track and when this is accounted for the

rate of convergence is slowed. Additionally, since the tankers are pulled from bases

which are farther away than the optimal tanker base, more fuel is burned. Therefore,

the large difference in the tanker fuel consumption after 100 iterations is a function of

the distances flown by the available tankers and to a smaller extent, the slower rate

of convergence.

3.6.2 Optimizing With All Tankers at a Single Tanker-Base

The model has been shown to pick the most desirable tankers when there are tankers

at multiple locations, but another important attribute of the model is optimizing over

a fleet of tankers at a single location. The previous section showed that a tanker fleet

given an excess of tankers will choose the most desirable tankers based on location

and availability, but how well does the model optimize when tankers are only at a

single location?

To test the ability of the model to optimize over a single location, two locations

within the LDS were chosen and given 100 tankers for separate simulations. The two

tanker base locations were chosen for their relative closeness to the refueling tracks

used in the base LDS simulation. Location A is closer to the aerial refueling tracks

in the base LDS simulation than Location B. It is expected that Location A will

more quickly send out tankers due to the decreased movement cost of tankers to

refueling track when compared to Location B. However, as the simulations progress

the movements of tankers from both Location A and Location B, as well as the total

cost, are expected to be similar.

As shown in Figure 35, Location A optimizes much more quickly then Location
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Figure 35: Total Cost Per Iteration For Location A (Left) and Location B (Right)
for the LDS using 100 Tankers at a Single Tanker Base

B. Since the linear program at the heart of the model is constructed of both the value

function approximations and tanker movement cost this is an expected result. In

the early iterations, the tankers at Location A have a very low cost associated with

moving to refueling tracks, while those from Location B have a much higher cost for

moving. The lower threshold for moving tankers causes more tankers to move to the

refueling tracks in early iterations and thus an optimal solution is found more quickly.

Location B has a higher cost threshold for moving tankers to tracks and thus in the

first iterations it moves fewer tankers. By moving fewer tankers to tracks in the first

four iterations, the values built in the VFAs for having one or two tankers at a track

is very high as many receivers fail. Figure 36 shows that after the fourth iteration

the value of moving tankers to tracks has become high enough to move a majority

of the tankers from Location B to refueling tracks. Since in the early iterations the

value functions at all refueling tracks consistently showed receiver mission failures, the

model must then recompute value functions at all refueling tracks as tankers move to

the refueling tracks in later iterations. The smoothing associated with this calibration

of the value functions slows the convergence for the simulation of Location B. However,

as the simulation progresses both locations use a similar number of tankers. Both

simulations also have similar total cost, but the cost of sending the tankers to tracks
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from a more distant tanker base is reflected in the slightly higher cost of Location B.

Figure 36: Tanker Usage Per Iteration for Location A (Left) and Location B (Right)
for the LDS using 100 Tankers at a Single Tanker Base

The results of the aerial refueling model when a single tanker base location is

used mirror those expected in real life. When a lower cost is associated with a

move it requires much less value to make the move positive. Therefore, the quick

convergence of Location A to a stable value is expected. For a longer move, as

with Location B, it takes a higher value to make a move a positive choice. The

model works in this manner for Location B as it requires the value functions to build

high values before moving tankers. Also, the model is responsive to the many value

functions which exist within the system. In the early iterations for the Location

B simulation, positive values are built at many refueling tracks due to continuing

mission failures. In the other simulation, as there no mission failures in early iterations

due to optimal tanker placement, the value functions at tracks without tankers are

updated with a value of zero for having one tanker. Therefore, for the Location A

simulation, the linear program does not send tankers to unused tracks after the initial

iterations since there is not a positive value associated with the moves. Conversely, in

the Location B simulation, the artificially high value function approximations from

the early iterations must be corrected through the system “learning” the correct

placement of tankers and values associated with those locations. As the system learns

the correct locations the values associated with having tankers at unused locations
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decreases to a low enough level that tankers are not longer sent to those locations.

The aerial refueling model can consistently optimize from a single location as well

as from multiple locations. Additionally, increasing numbers of tankers in the system

are handled by the model and can dramatically decrease the iterations required to

reach optimality. The consistent results which occur when varying the number of

tankers in the system show that the value function approximations are insensitive to

tanker inputs. Therefore, the stability of the value functions highlight the usability of

the model for mission planers since the model’s results are not dependent upon any

operator skill or finesse.

3.7 The Value of Fuel

The purpose of this model is to minimize the fuel cost associated with refueling

receiver missions for a given set tankers. Therefore, it is important that the fuel burn

characteristics of both the tankers and the receivers accurately reflect the rates of

planes in the Air Force inventory. Throughout this research a constant, specific fuel

burn rate for both tankers and receivers in the system was used. While there are

added complexities to the fuel burn rates of planes such as differential rates between

take off, cruise, and refueling, the complexities were ignored for the sake of concise,

applicable results. In the model, the tankers burned fuel at the rate of 14,400 lbs/hr

and receivers at 6,600 lbs/hr, which were values derived from “AFPAM 10-1403, AIR

MOBILITY PLANNING FACTORS” used by the US Air Force when making gross

calculations of aerial refueling requirements.

Built into the aerial refueling model is the implicit assumption that when making

decisions for tanker movements and receiver movements, moving a tanker is 2.18 times

more expensive than moving a receiver. The fuel ratio, fr, is the burn rate of the

tanker divided by the fuel burn rate of the receivers.

fr =
burntankerlb/hr

burnreceiverlb/hr
. (26)

Since tankers are assumed to burn fuel at a rate which is 2.18 times greater than the
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receivers, the model will likely choose shorter movements for the tankers and move the

receivers greater distances. This solution appears to be out of line with the dynamics

of the real problem, where receivers have far less fuel than tankers and therefore each

pound of their fuel is more valuable. By changing the cost associated with burning

tanker fuel in the model, the results will provide insight into where receivers would

refuel if tanker movements through the system are essentially cost free.

Given that in the model a higher value is placed on tanker fuel than receiver fuel,

it was determined that the cost of tanker fuel would be dropped such that it would be

less costly to fly an hour in a tanker than a receiver. The lower fuel burn rate is only

incorporated in the explicit movement cost of the tankers and not in calculating actual

fuel burned, which updates the attribute vector of the tanker. By only changing the

cost of a tanker movement, the dynamics of how long a tanker can be in the sky or

the amount of receivers a tanker can refuel are not changed, but rather only the cost

associated with moving a tanker in the linear programming formulation. In Tables 13

and 14, Fuel Ratio is the cost associated with the fuel burn rates between the tankers

and the receivers. When the fuel ratio is set at 0.1; the model assumes the receivers

burn fuel at a rate which is ten times costlier than the tankers.

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 100 25 10,000 0.10 0.6
Set 2 100 25 10,000 1.0 0.6
Set 3 100 25 10,000 2.18 0.6

Table 13: Large Data Set Inputs with Changing Fuel Ratios

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 50 20 10,000 0.10 0.6
Set 2 50 20 10,000 1.0 0.6
Set 3 50 20 10,000 2.18 0.6

Table 14: Small Data Set Inputs with Changing Fuel Ratios

The data sets reacted differently to varying the fuel burn rates and therefore the

conclusions and limitations of this approach are discussed in two parts.
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3.7.1 LDS Results

Lowering the tanker fuel burn rates did not provide improved solutions for the LDS.

Within the model there is a commingling of the tanker and receiver fuel burn cost as

well as the receiver mission failure cost, which complicates the expected results of the

model when changing the tanker fuel burn cost variable. Table 15 shows that when

the fuel burn rate for the tankers is lowered (Set 1 has the lowest cost), the receivers

and tankers actually burn more fuel and the solution is unstable due to continuing

mission failures. In addition to the increased fuel consumption, the model optimizes

much slower and continues with a large number of unused tankers after 100 iterations.

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 5,206,932 5,124,072 3308 718 25 9.44 13.19
Set 2 1,985,168 2,951,200 646 140 25 4.17 9.58
Set 3 1,595,082 1,525,753 486 11 20 0.5 4.75

Table 15: Large Data Set Outputs with Changing Fuel Ratios

The explanation for the failure of an improved receiver solution with a lower tanker

fuel burn cost is rooted in the fuel burn rates of the receivers themselves. The tanker

movement decisions occur in the linear program. In the LP the cost of moving a

tanker is compared with the value associated with having a tanker a track. The value

of moving the tanker to a track is determined from the value function approximations.

In the LDS base configuration, all of the input variables work in concert and reliably

decide when tanker should move to a track. However, when the tanker fuel cost is

reduced greatly for the LDS the decisions are much less reliable for two reasons.

The first reason the results suffer stems from the decreased threshold for sending

a tanker to a track. In the aerial refueling model, queuing under 15 minutes is not

penalized and therefore the only savings from sending an additional tanker to a track

with a receiver queue is the savings gained from reducing the queuing fuel burn cost

to zero. Considering a queue of ten minutes and the standard receiver fuel burn rate

of 6,600 lb/hr, the savings of an additional tanker which eliminates the queue is 1,100
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pounds of fuel. In the base LDS simulation a tanker would not move to save the

system 1,100 pounds of fuel unless the distance was less than five minutes away, since

in five minutes the tanker would burn 1,100 pounds of fuel. Therefore, in the base

model the receivers would enter a queue and be served by the original tanker. When

the tanker fuel burn rate cost is dramatically decreased to 660 lb/hr, the dynamics

of the model change considerably. With the lowered fuel burn rate the tanker can

travel up to 100 minutes to eliminate queuing and will have burned the same amount

of fuel as the queueing it eliminates. With the lowered threshold for sending tankers

to tracks to reduce queuing the model sends out most of the available tankers in early

time steps of an iteration. The movement of the tankers in the early time steps results

in less tanker availability in the later time steps as the tankers are sitting at their

bases refueling and receiving maintenance. The lack of tankers in later time steps

accounts for the dramatic increases in queuing that occurs in later time steps of an

iteration.

The second reason that the results do not improve when the tanker fuel cost is

lowered is that there exists many more tanker movement decisions which have similar

fuel burn cost. This is important because normally there are distinct choices when

comparing distances due to fuel burn rates. When the tanker fuel burn cost is lowered

it changes the scale of the comparison between fuel burn rates and mission failure

cost. Therefore, through this lack of scale more tankers enter the system than should

for a certain level of receivers. When the tanker fuel burn cost is at a more reasonable

6,600 lb/hr (fr = 1.0), the problem is not as dramatic as at the lower cost of 660

lb/hr but it still exists. Examining the results when the Fuel Ratio is 1.0 the solution

is heading in the correct direction; however it is taking dramatically longer to reach

an optimal solution then the standard fuel burn ratio of 2.18. In the SDS results

section 3.7.2 the outputs are more in line with the base outputs; however, the results

are more indicative of a smaller state space which will be discussed below.
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3.7.2 SDS Results

The SDS suffered from the commingling of variables as in the LDS; however, this is

mitigated due to the SDS having only four tracks and the long distances associated

with reaching those tracks. Within the SDS the distances traveled to tracks by tankers

are much greater than those in the LDS. The average tanker base to track distance for

the SDS is 1,054 miles while in the LDS it is only 606 miles. The increase in distance

makes it far less attractive to move tankers to save queuing time in the SDS than in

the LDS. In the SDS, a plane must queue for nearly double the time of the LDS before

it appears attractive to move a tanker and save the queuing time. Additionally, the

increase in the fuel required to travel home decreases the amount of time tankers in

the SDS are able to stay on a track, regardless of the tanker fuel burn cost. Since the

distances are greater, tankers are forced to return home instead of staying at a track.

In the SDS the problems associated with the LDS are diminished due to the unique

structure of the data set; however, even with this data set the results don’t show a

marked decrease in the total fuel burned by the receivers, as shown in Table 16.

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 2,506,515 1,314,679 116 12 19 0.25 4.38
Set 2 2,554,547 1,909,531 116 12 20 0.12 4.25
Set 3 2,487,073 2,131,740 116 12 16 0.12 4.25

Table 16: Small Data Set Outputs with Changing Fuel Ratios

The results from the LDS and the SDS show that changing the cost of the tanker

fuel to an artificial level does not affect the total receiver fuel burn cost dramatically,

but can introduce problems within the model. Changing the tanker fuel burn cost to

lower levels in the LDS caused tanker behavior which had negative affects on both

receiver and tanker fuel burn cost. The SDS does not suffer from the shortcomings of

the LDS due to its structure, but it was shown that changing the tanker fuel cost did

not noticeably decrease the total receiver fuel burn cost of the system. Additionally,

the LDS is a much richer data set and more instructive of the results which would

be expected of other large data sets. Therefore, while it superficially appears that
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reducing the tanker fuel burn cost would produce a better receiver solution, it is

shown to have little upside but a large possible downside, and it is not recommended

that attempts at changing the behavior of tanker movements through changing fuel

burn cost to artificial levels are instituted.

3.8 Moving Planes on Target with Maximal Fuel Loads

The previous section examined the differences in the total receiver fuel burned when

the cost of tanker fuel is lowered. The previous approach was not very instructive for

a variety of modeling reasons, and its use would have been of limited value in real

world situations. A major limitation to artificially changing the tanker fuel burn cost

is that in the real world supply officers want to minimize fuel burn by both entities.

In this section another approach at influencing receiver behavior without artificially

altering fuel costs is shown.

When a receiver mission takes off from its base the first leg in its mission is

reaching the refueling track and linking with a tanker. After finishing the first leg of

the trip the receiver moves from refueling track to the target. Within the mission, the

fuel level of the receiver has much greater value during the second leg than the first.

There are several reasons for valuing fuel to a greater extent in the second leg of the

mission, which involve the ability of the receiver to move at high speed if necessary

(which has a higher fuel burn rate), the face that more fuel allows the receiver to

patrol for targets of opportunity, and a greater initial fuel load ensures that a receiver

will have adequate levels of fuel to exit the combat zone. Since the fuel level is more

important in the second leg than the first, it is reasonable to assume that a solution

which refuels receivers closer to their intended targets is one goal of mission planning.

The aerial refueling model incorporates a scaling factor on the second leg of a

receiver mission which can be tuned to make flight profiles with shorter track to

target distances preferred to profiles with longer track to target distances. Below is

shown the exact type of behavior the scaling factor will produce and the simulation
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results of implementing the scaling factor.

In Figure 37 the distance profiles of a plane flying to a target via Track 1 and Track

2 are illustrated. For this example both the tanker and the receiver are launched from

the same base and must travel to either Track 1 or Track 2 to refuel the receiver. When

comparing the fuel burn of the receiver between traveling to Track 1 and then on to

its target, or to Track 2 and then on to its target, the differences appear negligible

with Track 2 holding a slight advantage. However, since the model optimizes over

the total fuel burned in the system, the fuel burned by the tanker is also considered

when picking the optimal track.

Figure 37: Track Distance Movement Example for Two Tracks

Flying a tanker to Track 1 involves a much longer tanker round trip flight than

flying to Track 2 and therefore the fuel cost is much greater. The minimization of

fuel cost for this brief example is simply calculated as the combined fuel burn of the

tanker and receiver and Track 2 is the obvious preferred choice. While Track 2 is the

best choice for minimizing fuel cost in this example, the solution ignores any outside

influences for which Track 1 might be preferred to Track 2 in spite of the increased fuel

cost. In certain situations it is not unreasonable to assume that Track 1 is preferred
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to Track 2 since the receiver will enter the combat zone with far more fuel, but how

can the aerial refueling model ever chose Track 1 without hard coding the model with

data set specific rules?

The answer is the previously mentioned approach of separating the receiver mis-

sion profile into two distinct parts. In the aerial refueling model the receiver’s flight

distance is broken into two components: the flight from base to the track and the

flight from the track to the target. By placing a penalty factor, x, on the second leg

of the trip when the receiver decisions are made, it can be assigned to the track with

a tanker which is closest to its target. While this appears to be a brute force method,

it actually is quite subtle in its execution since tanker movements are directed solely

through movement cost and value functions. The value functions which are used

to decide where to move tankers can be influenced through the method of splitting

the receiver movement into two parts during the early iterations. During the early

iterations which are purely exploratory, the model places tankers at all the available

track locations subject to tanker constraints. In these early iterations, influencing

where the receivers travel also influences how the value functions are built at loca-

tions. Equations 27 through 30 govern the total cost of the system and are shown

below:

Ctnkr = 2 ∗Di (27)

Crcvr = Di + (1 + x) ∗Di,target (28)

Ctotal = Ctnkr + Crcvr (29)

i ∈ I = Set of all track locations (30)

In Figures 38 - 40 an example problem is shown to illustrate the influence that

changing the value of the penalty factor, x, can have on the movements of receivers and

tankers in the system. Within the system there are two tankers and a single receiver.

In iteration A (Figure 38) there are no tankers at either track but a derivative is

calculated at each track for having a tanker and the value functions are updated.

With the updated value functions in the second iteration (Figure 39), tankers fly
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Figure 38: Iteration A - Updating the Value Functions at Both Tracks with No
Tankers at either Track

to both tracks since there is a positive value associated with having a single tanker at

each track. When the receiver enters the system it is faced with the decision policy

that it will travel to the track which has the lowest total distance cost. By setting

x arbitrary high the second leg of a receiver mission is much more costly than the

first leg when the assignment to track policy is calculated. Therefore, for high enough

x the receiver mission will travel to Track 1. With a receiver at Track 1 there is a

positive value associated with having a tanker at the track and the value function is

updated to show this. Track 2 does not have a receiver and therefore there is no value

in having a tanker at the track. The value function at Track 2 is updated through

exponential smoothing and the value function reflects the fact that it is less valuable

to have a tanker at Track 2.

As the iterations progress and the receiver continually travels to Track 1, the value

of sending a tanker to Track 1 continues to remain positive enough to send a tanker to

Track 1; however, eventually, the value function at Track 2 will reflect a low enough

value that a tanker will not be assigned to to Track 2, as shown in Figure 40.

The previous example illustrates on a small scale how a penalty can induce be-
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Figure 39: Iteration B - Updating the Value functions at Both Tracks with Tankers
at both tracks and receiver at Track 1

Figure 40: Iteration N - Updating the Value Functions at Both Tracks with a Tanker
and receiver at Track 1 no tanker at Track 2

havior which more closely mimics that of real world operational planners. The aerial

refueling model optimizes over far more tracks and tankers as well as time periods

than the toy example shown above, but the same general framework still applies.

The receiver missions are still broken into two distinct parts with the track to tar-
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get distance holding a greater weight in determining where receivers move than the

movement from base to track.

The standard setting used throughout this thesis for receiver “weighting” factor

is set at 0.6. When the weighting factor is set to 0.0 the model is indifferent between

the relative lengths of the two legs of the trip and merely optimizes both tanker and

receiver fuel. As the weighting factor is increased it is expected that the receivers

will be refueled closer to their targets. Consequently, as the receiver’s movements are

more heavily weighted in the model, albeit indirectly, the tanker total fuel cost will

stay the same or increase due to the added constraint. The input for the weighting

factor, is referred to as the Movement Penalty, shown in table 17

V ariable Iterations Tankers Rcvr Penalty Fuel Ratio Movement Penalty

Set 1 100 25 10,000 2.18 0.0
Set 2 100 25 10,000 2.18 0.6
Set 3 100 25 10,000 2.18 5.0

Table 17: Large Data Set Inputs Changing Movement Penalty

To measure the changes in the model, the standard approach of looking at the fuel

consumption for both the receivers and the tankers is not entirely appropriate. While

these measures give meaningful data on the fuel required, there is a more appropriate

measure for this series of simulations. For these simulations a measure of the distance

the receivers are flying from their tracks to their targets highlights the response of

the model to changing the weighting parameter.

The results in Table 18 are illustrated in Figures 41 - 43, which highlight the

difference in the distances traveled by the receiver missions in the LDS.

RcvrFuel TankerFuel Delay MaxDelay TnkrUsed Unused Used
Set 1 1394244 885203 508 11.33 18 0.42 4.25
Set 2 1595082 1525753 486 11.33 20 0.5 4.75
Set 3 2613790 1958372 465 11.33 24 1.58 6.58

Table 18: Large Data Set Outputs After Changing Movement Penalty
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Figure 41: Difference in Track to Target Location for Identical Receivers (Miles)-
Movement Penalty Factor 0.0 minus Movement Penalty Factor 5.0

Figure 42: Difference in Track to Target Location for Identical Receivers (Miles)-
Movement Penalty Factor 0.6 minus Movement Penalty Factor 5.0

Figure 43: Difference in Track to Target Location for Identical Receivers (Miles)-
Movement Penalty Factor 0.6 minus Movement Penalty Factor 0.0
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Figures 41 - 43 illustrate the effect on the location of receiver refueling tracks using

different penalties. The difference between the distance traveled for identical receivers

when there is a penalty factor of 5 versus a penalty factor of 0 is dramatic (Figure

41). The distance is calculated as the lower penalty factor receiver distance minus

the higher penalty factor receiver distance so positive values indicate that the lower

penalty factor receiver traveled a longer distance. With the higher penalty factor the

receivers always fly a shorter distance from track to target for the LDS. The ability

to change the behavior of the model so dramatically is an important result for its

importance in realistically modeling combat aircraft movements.

During Operation Enduring Freedom in Afghanistan this model could have been

particularly useful when examining aerial refueling of US Naval aircraft. During the

early stages of OEF, Air Force tankers were based on the island of Diego Garcia

and at Romanian air bases, both of which are thousands of miles from the border of

Afghanistan. While the tankers were flying in from one location, the United States

Navy’s aircraft carriers were positioned off the coast of Pakistan in the Indian Ocean.

Receivers flying from the aircraft carriers required refueling operations on their way

to their targets in Afghanistan. Modeling this problem with the aerial refueling

algorithm and the track penalty set to zero, the behavior would likely not be suitable

to combat operations as receivers would refuel at tracks which lowered the tankers

travel distances. As shown in Figures 41 - 43, when the model is free to optimize

without a track to target penalty, the chosen refueling tracks often entail a long track

to target distance for the receiver. While the result is mathematically correct, during

combat operations the preferred refueling method is that tankers come to a location

which is more optimal for the receivers than visa versa. By changing the penalty

factors the mission profiles for the OEF missions could be tailored to accurately

reflect preferred mission profiles and refuel closer to the targets in Afghanistan then

the tanker bases.

Despite the favorable characteristics of the model, a large drawback of assigning

a high penalty to the last leg of the receiver missions is that the tanker fuel burn cost
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incurred increases. Figure 44 illustrates the dramatic increase in the total fuel burned

by the tankers when the penalty is increased. The increase in fuel consumption by

the tankers as the penalty increases is a direct function of tankers traveling greater

distances to tracks which are closer to the receiver’s targets. It is interesting to view

the Pilotview outputs in Figures 45 - 47, which show how the receiver movements

change with the added penalty as well as the differences in the tanker movements in

Figures 48 - 50.

Figure 44: Comparison of Fuel Burned by Set for Varying Movement Penalties - Set 1
Zero Movement Penalty - Set 2 0.6 Movement Penalty - Set 3 5.0 Movement Penalty

In the receiver figures, two simulations are overlayed for each time period. The

two simulations are with a track to target penalty of 0 and a track to target penalty of

5. Therefore each time period shows the movements of identical receivers through the

system. The receiver figures highlight the large differences in the distance traveled

between the two simulations. The figures clearly show that when the penalty is set at

5, the distances traveled by the receivers from their refueling tracks to their targets

is greatly decreased. An example of this is visible at the top of Figures 46 and 47. At

the top of the figures it can be seen that when the penalty is set to 0, the receivers

refuel very close to their bases; however, when the penalty is set to 5 the receiver

refuels at a track close to its target.
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Figure 45: Receiver Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 1

Figure 46: Receiver Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 2

Figures 48 - 50 show the movements required by the tankers to refuel the receivers

closer to their targets. The figures show two different simulations which are overlayed

on the same background. In the tanker example, the tankers are not guaranteed to

be identical in each simulation; however, the tankers are refueling identical receiver

demands. The interesting aspect of the tanker movements is that in the data set with

the high penalty, tankers fly independently across the combat zone. The thickness of

the lines represents additional tankers and it can be seen that with zero penalty the

tankers tend toward similar tracks. These tracks minimize the tankers total fuel burn
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Figure 47: Receiver Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 3

since tankers burn fuel at a rate which is more than double that of the receivers. In

Figure 50 the differences in the distances traveled by the tankers between the sets is

readily apparent and helps to explain the results of Figure 44.

Figure 48: Tanker Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 1

The behavior of the model has several advantages and disadvantages which must

be weighted in actual combat planning. When the track to target penalty is increased

the desired change in the receivers flight patterns is achieved, and they fly to their

target with a greater fuel load. The drawback of arriving at their track with a
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Figure 49: Tanker Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 2

Figure 50: Tanker Movements Comparing 5.0 Movement Penalty and 0.0 Movement
Penalty - Time Period 3

greater fuel load is the lack of a common refueling point for receivers. During combat

operations tankers have no ability to defend themselves against an enemy attack, and

therefore, if they are in a hostile environment they would require fighter escorts to

ensure their safety. When the tankers are all located at common refueling tracks it is

easier to protect the airspace around the refueling zone than if there are many tankers

spread around the combat zone. Therefore, in a time of insecurity early in a conflict

when air superiority is still contended, it might be preferable to have common tanker

refueling points. A major strong point to this model is its ability to produce both
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types of receiver/tanker mission profiles with detailed outputs which can guide the

combat planner’s decision making process.
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4 Extensions - Changing Inputs and Stochastic

Demands

The following sections examine several aspects of the model which do not involve

changing parameters within the model. Rather, a series of tests on the adaptability

and robustness of the model are shown. The tests focus on introducing stochastic de-

mands of varying types, which include varying receiver arrival times, receiver mission

fuel demands, receiver mission loads within the system, and the ability of the model

to solve perturbed inputs. In addition to showing the robust nature of approximate

dynamic programming, the following sections provide insight into how a mission plan-

ner could exploit the model’s attributes for specific types of data sets. The following

tests show the general nature of solutions as well as the adaptability of the model to

changing inputs, which is important when planning for uncertainty such as in aerial

refueling.

4.1 Using Results to Guide Inputs - Stochastically Perturb-
ing Refueling Times

The solutions illustrated throughout this thesis have all been generated from on a

static data set. During a simulation the algorithm has seen identical receiver de-

mands in each iteration and created value functions which guided tanker and receiver

movements. These solutions have been appropriate for combat planning purposes,

and we would expect that they would work in real world applications as they are

identical to the current solutions that also use static data sets. However, in the ap-

plication of the solutions to the real world, one could expect that receivers are not

identical to the projected receivers and that the receivers arrive 10 minutes early

or late or that their fuel levels vary from the projected fuel levels initially planned.

For a model to be successful in real world applications it must be able to absorb the

stochastic nature of the real world without the solution imploding, which in the aerial

refueling problem would be realized through planes falling out of the sky (not a good

way to test a solution).
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Within the aerial refueling simulator, the ability to adapt to uncertainty has been

hidden in plain sight. The statistic which shows how well the model can adapt to

varying refueling times and refueling loads is the fueling delay statistic. The fueling

delay shows how long planes are expected to wait in a queue for a tanker after their

planned refueling time. In the model the fueling delay given for each plane illustrates

how well that plane could react to changes within the system. A plane with no fueling

delay is not required to wait for refueling since it is assigned to a tanker with no queue,

or it is the first plane in the queue. A plane with a long fueling delay is required to

wait in a queue for an extended period of time as it is either in a queue with a large

number of receivers or in a queue behind a receiver which requires a large fuel offload.

For a model to stand up to the actualities of aerial refueling it is required that there

exist very low fueling delays for each receiver. Since mission planners usually do not

tax the safety reserves of planes requiring refueling, it is clear that for a receiver with

a low fueling delay a sufficient fuel reserve must exist to absorb any uncertainties of

the system. Figure 51 shows that the fueling delays are modest for the base LDS

simulation, with a maximum value of 14.33 minutes. In this model the expectation is

that variations in the refueling times and arrival times would not cause the planes to

fall out of the sky as each plane is not delayed for an extended period. Additionally,

after the aerial refueling problem has been solved, the mission planners could easily

adjust the expected arrival times of receivers within a few minutes to decrease any

long queuing within the system.

When receivers are delayed for a short time interval, it is usually because two or

more identical receivers arrive at a track location at the same time. When multiple

receivers arrive at a track at the same time it is often less costly to refuel both of

them with one tanker, causing a queue, than to move in another tanker to eliminate

queuing. The data sets are constructed in such a way that there are many instances

of multiple receivers being clones of another receiver mission and therefore arriving

to a track at the same time. The cloned receiver missions are illustrative of fighters

flying in pairs to a target or a fighter escorting a bomber to a target, which occurs in
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Figure 51: LDS Fueling Delay Base Case

actual mission planning. The important aspect of modeling pairs of receivers flying a

common flight plan is that they both arrive at the target area at the same time. While

the data sets are constructed to have receivers refuel at identical times in practice it

is not necessary that the receivers refuel at identical times. It is important that the

receivers refuel at the same location and similar times; however, the overwhelming

concern is that they arrive on target together. Additionally, it is often not reasonable

to assume that receivers have identical launch times and therefore refueling times if

they are both taking off from an aircraft carrier. Thus slightly perturbing refueling

times is not an unreasonable compromise of the data set for the goal of reducing

queuing within the system.

A mission planner who has run a data set and found queuing times to be unac-

ceptable for identical pairs of receivers could alter the refueling times to lessen the

queuing. After examining the initial results from the LDS base simulation, a mission

planner could stagger refueling times slightly for identical receivers. A change in the

refueling times for identical receivers would be expected to reduce queuing time and

allow for greater variability in the process of refueling, without changing the goals

and capabilities of the mission profiles.
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This is a reasonable goal of a mission planner and is easily implemented through

changing refueling times slightly and rerunning the model. To implement the changes

in receiver refueling times, a mission planner could go through the missions and

manually change the refueling times; however, in a large data set accomplishing this

goal could be a long procedure. Instead of manually shifting refueling times, the

model was set to introduce randomness into the refueling times. For the base LDS

all inputs are deterministic so every simulation produces identical results. To change

the refueling times, when the deterministic refueling times were read into the system

they were perturbed. The perturbation used a random number generator from a fixed

interval to add between [-10, 10] minutes to each receiver mission. By shifting the

receiver missions, the model was able to eliminate identical refueling times.

A series of five simulations with perturbed refueling times were run. All five

simulations showed a decrease in queuing times, which was a direct result of receivers

not having identical refueling times. To account for the stochastic nature of the new

data sets when reporting the results the five perturbed solutions are averaged. In the

base LDS a pair of identical receivers which are refueled by the same tanker would

accrue large queuing cost. In the perturbed LDS the same “identical” missions now

come to the refueling track at slightly different times, and therefore while they are

still refueled by the same tanker they are not forced to wait in a queue for as long as

the base case.

As shown in Figure 52, when the mission planner varies the refueling times of the

receivers slightly, the results are very similar to the base case with respect to the total

cost of the system; however, as shown in Figure 53 the fueling delays are decreased

dramatically. The reduction in fueling delays gives the model the flexibility to absorb

the uncertainties of the real world to a greater degree, and is accomplished without

changing the ability of the receivers to complete their initial missions.

The success of introducing slight perturbations into refueling times and dramati-

cally reducing queuing in the system is a strength of the model. The small shifts in

refueling times do not dramatically influence the decisions within the system; how-
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Figure 52: Total Cost for the Base LDS Simulation and the Compiled Perturbed
Refueling Time Simulations

Figure 53: Fueling Delay for the Base LDS Simulation and the Compiled Perturbed
Refueling Time Simulations - Iterations 61 - 100

ever, they greatly reduce queuing. The results shown by perturbing the refueling

times also illustrate the flexibility of the initial solution for the base LDS simulation.

The base LDS simulation had many “identical” receivers; however, in practice one

receiver would arrive slightly before or after their counterpart which would lead to

decreased queuing. The perturbations to the refueling times shown illustrate how well

the base simulation would be able to handle the stochastic nature of aerial refueling.

This result shows that the aerial refueling model is very robust for varying refueling

times and the base results are stable enough to handle the actual aerial refueling
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operations.

4.2 Stochastically Varying Fuel Demands

The current model employs a predetermined fuel offload for each receiver mission.

While it is reasonable for modeling to assume that receiver missions require a fixed

fuel level, a positive attribute of the model would be an ability to accommodate

varying fuel levels. When increasing the stress on the model through stochastic fuel

demands it is hoped that a variety of poor results are not induced, such as: increased

fueling delays, mission failures, or tankers running out of fuel.

To test the ability of the model to respond to stochastic fuel levels, two different

types of simulations were run. The base simulation (deterministic) took the SDS and

looped over the missions, increasing the fuel demands by 20 percent over the original

fuel demand for 50 percent of the missions.

(
FuelDemandReceivers

)
=

∑
j∈J

1.2(P̃ (>.5))(FuelDemandj) + 1.0(P̃ (<.5))(FuelDemandj)

The new data set, SDS2050, was optimized for twenty iterations up until a stop-

ping iteration nu. After twenty iterations the value function approximations (VFA)

were fixed and a new input data set was tested on the trained VFA. The new data

set, SDS2050i, was identical to SDS2050 except that the fueling demands were per-

turbed. For each deterministic data set and its associated VFAs, ten perturbed data

sets were tested. In this manner the ability of deterministically trained VFAs to op-

timize perturbed data sets were tested. Since each set of deterministically trained

VFAs is only one sample realization (the sample path Ω is simply a series of identical

ωi), 15 different simulations with different original SDS2050 were run to find the

average ability of the data sets to optimize the stochastic data sets, SDS2050i.

The counterparts to the deterministically trained VFAs are stochastically trained

VFAs, which are created through changing the input data set at each iteration of

the VFA training phase. While the deterministically trained data simulations take
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a sample realization and optimize on the single realization for 20 iterations, the

stochastically trained simulations use a different sample realization for each itera-

tion. Therefore, the model is constantly adjusting to optimize VFAs with changing

demands and the sample path, Ω, is responsive to both ωi and the ordering of the

realizations. As with the deterministically trained VFAs, the stochastically trained

VFAs are trained until nu and then the trained VFAs were tested with ten stochastic

data sets SDS2050i. The updated algorithm for incorporating both stochastic data

sets as well as stopping the updating of value functions is shown in Figure 54.

Step 0: Initialization:

Step 0a. Initialize V̄ 0
t , t ∈ T .

Step 0b. Set n = 1.

Step 0c. Initialize Rx
0 (The set of all tankers in the system).

Step 1: Choose a sample realization ωn if deterministic run and n = 1, or if deterministic run and
n > nu, or if stochastic run. For t = 1, 2, . . . , T . (Standard receiver missions with altered fuel
demands) do:

Step 2a: Create the linear program from the available tankers and associated value function
approximations:

Step 2b: Solve the optimization problem:

max
xt∈Xn

t

[(Ct(Rn
t , xt) + V̄ n−1

t (RM,x(Rn
t , xt))]

Step 2c: Simulate the receiver refueling and queuing to find v̂n
t (Rx

t )

Step 2b: Increment Rx
t ± ε, at all tracks.

Step 2d: Re simulate the queues with the ± ε to find the derivatives which are v̂n
t (Rx

t (±ε))

Step 2e: If t > 0 and n < nu (Where nu is a predetermined iteration for stopping updates)
Update the appropriate value function using:

v̄n(r) =
{

(1 - αn−1)v̄n−1
t−1,a + αn−1v̂

n
ta if r = Rn

v̄n−1(r) otherwise

Step 2f: Update the States:

Sn
t+1 = SM,W (Sx,n

t , Dt+1,Wt)

Step 3. Increment n. If n ≤ N go to step 1.

Step 4: Return the value functions, {V̄ n
t , t = 1, . . . , T, a ∈ A}.

Figure 54: An approximate dynamic programming algorithm to solve the aerial refu-
eling problem incorporating stochastic data sets.
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To create meaningful results when testing stochastic data, the data sets are av-

eraged so that conclusions are not drawn from a single sample path. For both the

stochastic and deterministic data sets 15 separate simulations were run and the results

were compiled.

Figure 55: Total Cost Stochastically Trained Simulations versus Deterministically
Trained Simulations - Training for 20 iterations and Testing over the last 10 iterations

Since there is a high cost associated with long fueling delays and mission failures,

the expectation is that stochastically trained simulations will send out more tankers

during its training phase than the deterministically trained simulations. As shown in

Figure 55, during the twenty training iterations the stochastically trained total cost is

higher than deterministically trained simulations. The components of the higher cost

are the total fuel burn by the receivers as well as the tankers. The higher fuel burn of

the receivers is caused by a greater amount of queuing in the system (Figure 56), as

the system cannot optimize the tanker fleet as precisely as in the deterministic. The

second component of the increased cost is contributed by the increased tanker fuel

cost (Figure 57). The increase in the tanker cost is due to the system sending out

additional tankers in the stochastic simulations due to the increased value of tankers

at tracks when the demand is not as clearly known.

The results during the training phases between the two simulations are intuitive

and mirror the decision a person would likely choose. When a mission planner is given
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Figure 56: Fueling Delay Stochastically Trained Simulations versus Deterministically
Trained Simulations - Training for 20 iterations and Testing Over the Last 10 Itera-
tions

uncertainty he would likely err on the side of caution and place additional tankers in

the sky to limit negative outcomes. This is the behavior shown during the training

iterations when the model has an approximation of the future demands and sends

out additional tankers to limit excessive fueling delays and mission failures.

Figure 57: Tanker Cost Stochastically Trained Simulations versus Deterministically
Trained Simulations - Training for 20 iterations and Testing Over the Last 10 Itera-
tions

The testing phase on the trained VFAs is also instructive in that the output

data does not shift any appreciable degree. The a priori expectation is that the
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stochastic simulations would create VFAs which optimize better during the testing

phase than the deterministically trained VFAs. This expectation is based on the fact

that the stochastic VFAs are more general and value having more tankers at tracks

to accommodate perturbations in fuel demands than deterministically trained VFAs.

However, the results showed that the deterministically trained VFAs are general

enough to accommodate the instability in fuel demands. The stochastically trained

VFAs also perform well when tested, but the excess tanker movements dictated by

the VFAs do not improve the total receiver fuel burn or fueling delay. The results,

while unexpected, illustrate that the VFAs as constructed can handle significant per-

turbations to the receiver missions fuel levels. While the perturbations to the fuel

levels are significant, they represent a small cost within the system. Increasing a

fuel demand from 20,000 lb to 24,000 lb (which is an average receiver mission) only

increases the fueling time by a few minutes, and therefore any planes queuing behind

that plane will only encounter a few extra minutes of queuing. This small increase in

queuing results in the system accruing a very small change in total cost. Where the

fuel load is increased a great deal, such as an offload to an EP-3 from 100,000lb to

120,000lb, it occurs with tankers which have no associated queue since the original

offload exhausts most of the tankers fuel. The added cost of the system thus does not

significantly change the results of the model.

The results shown by the deterministic data set’s ability to handle stochastic fuel

levels once again illustrates the robust nature of the aerial refueling model. The

ability of the model to assimilate varying receiver refueling times as shown in Section

4.1, as well as varying fuel levels, shows that a deterministically trained data set’s

solutions are very flexible. Mission planners want aerial refueling solutions which

are both efficient and reliable in the real world and the aerial refueling model meets

both of those objectives. In the following section, the VFAs will be tested with much

greater perturbations to the system as the number of receivers will vary throughout

the simulation. This test will go beyond the expectations of mission planners and

again illustrate the robust nature of the aerial refueling model.
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4.3 Receivers Everywhere!!(Modeling Varying Receiver De-
mands)

The method of Approximate Dynamic Programming is a very powerful approach

when applied to stochastic demands since it can build value functions which account

for the varying demand levels. A standard example of the use of ADP with stochastic

demands is illustrated throughout Powell’s text (17) in the nomadic trucker example.

In the nomadic trucker example, at each time period and location a load with a

certain value to be carried to a new location can exist or not exist. If the trucker is

at that location then he observes the value of being at that location at that point in

time. If the trucker is not at that location then he never observes the load and it is

assumed to disappear (another trucker moves the load). Within the nomadic trucker

example, it is easy to implement stochastic demands since if a load is not carried

there is not a downside other than lost revenue since the demand leaves the system.

Therefore, over a simulation run a trucker can periodically sample locations and find

an approximation of the value of being at locations at a certain times. To scale up

the nomadic trucker example, if you assume that it is a trucking company and they

can send multiple trucks to many locations (as is the case with the aerial refueling

model) then the model resembles the aerial refueling model. In the larger trucker

model during the simulation the company might find that on Tuesday mornings it

is optimal to have four trucks in Miami since they expect four loads. If on Tuesday

morning three loads appear, then the company has no problem and has merely wasted

a resource that might have been able to fill a demand elsewhere. If instead on that

Tuesday there are five loads then the company moves the four loads and ignores

the fifth load. In both of these examples the trucking company would update their

estimation of the value of a having four trucks in Miami on Tuesday morning, but

the company would not drastically alter the number of trucks they send to Miami.

The aerial refueling constraints are much different since within the system unsatis-

fied demands do not disappear from the system. The aerial refueling model is similar
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to the trucking company with multiple trucks in that if it has too many tankers at a

location with few demands it will decrease its estimation of the tankers required. The

large difference between the two models is when the aerial refueling model has too few

tankers to fulfill the receiver demands. The receiver demands do not disappear from

the system, rather, large penalties for refueling delays and receiver crashes accrue in

the system. It is the large penalties associated with receivers crashing which help to

drive receiver mission failures to zero in the initial iterations of the model, but they

can also limit how effective the model is at handling stochastic demands.

While the nomadic trucker example does not require any structure to the demands

entering the system outside of a distribution of demands, this is not the case for the

aerial refueling model. The aerial refueling model cannot handle a series of random

missions at each iteration due to the large penalties which accrue in the system.

Therefore, the randomness of the missions must be limited to provide a measure of

stability to the system. With the need for stability in mind, an existing data set,

SDS, provided the foundation for the stochastic data set. From the SDS the receiver

missions (demands) in the system are randomly sampled for each iteration. Given

the structure and sampling of the new data set, the dynamics of the system are not

radically altered but the ability of the model to incorporate new information at each

iteration is illustrated.

4.3.1 Simulation Set Up

The structure of the stochastic and deterministic simulations are similar to that of

the stochastic fuel levels section (4.2); however, a brief summary is provided for this

specific simulation.

To test the ability of the model to incorporate a random sampling of receiver mis-

sions, the simulations were broken into two phases. The first phase of the simulation

was the “training” phase in which the model operated in its normal mode and up-

dated the value functions after every iteration. To train the value functions and then
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test their ability to incorporate stochastic data, the value functions were trained on

both a deterministic data set and a stochastic data set. For the deterministic data set

in the first iteration, a random subset of the receiver missions was chosen and used

to train the value functions. In choosing the receiver missions which would enter the

system, the formula below was used which looped over all available receiver missions,

J , and entered them into the system using an indicator function.

(
Receivers

)
=

∑
j∈J

j ∗ 1(P̃ (>.8)) (31)

Therefore, in each deterministic simulation the receiver missions entered in the

model were different sample realizations; however, the sample paths for each simula-

tion were fixed throughout the training phase. To train the model with the stochastic

data, the receiver missions which entered in the model were changed before each

iteration, again by Equation 31. In this sense the sample path seen by the stochas-

tic training simulation was much more complex than that seen by the deterministic

training simulation. The sample path for the deterministic training model was deter-

mined at the beginning of the simulation and was only concerned with the number

of receivers entered into the system. For the stochastic training model the sample

path concerned a different sample realization at each iteration, and therefore both

the number of receivers entered into the system as well as the timing of the receivers

entering into the system added randomness to the model. This is a fairly extreme

way to test the value functions, but it helps to show the stability of the system and

its applicability to real world situations.

After the training phase for both the stochastic and the deterministic simulations,

the value functions were frozen at their current values and then the stability of the

value functions was tested. To test the stability of the value functions at each iter-

ation of the testing phase, a different sample realization of the receiver missions was

run through the model using the fixed value function approximations to guide the

movements of the tankers in the system. The sample realizations were again a subset

of the SDS which was constructed using Equation 31. Since the receiver missions are
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pulled from an existing data set, the expectation is that the stochastically trained

simulations will be able to incorporate the stochastic sample realizations of the testing

phase better than the deterministically trained runs.

Since each run of the model for both the stochastic and deterministic training runs

followed different sample paths, the results for 15 simulation runs were aggregated

to find how well on average both systems worked. Fifteen runs were used due to the

apparent stability of the averages after 10 simulations and a the desire to build in a

buffer. While it is entirely likely that given a different set of 15 runs the results would

be different, the results from this test were stable, and therefore conclusions drawn

about the model would not differ to any appreciable degree.

4.3.2 Results

Since each simulation was split in two distinct phases, training and testing, the results

of each part are examined separately. The training phase for both the deterministic

and stochastic data sets was run for 19 iterations, and the testing phase was the

following ten iterations. During the training phase, shown in Figure 58, the model

optimizes behavior for both the deterministic data sets as well as the stochastic data

sets.

The major difference between the simulations is that the deterministic optimiza-

tion is much smoother and lower than that of the stochastic optimization. This result

is expected since in the deterministic simulations the model saw identical sample real-

izations for all 19 training iterations, while in the stochastic simulations each iteration

saw a different sample realization. While the total fuel used in the stochastic sim-

ulations was higher than that of the deterministic simulations, an interesting result

about the fueling delays in the training phase emerged which is shown in Figure 60.

The increased delay for the deterministic simulation accounts for a huge increase in

total receiver fuel burn which is shown in Figure 59 and discussed further throughout

this section.
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Figure 58: Total Cost Stochastically Trained Simulations versus Deterministically
Trained Simulations - Training for 19 iterations and Testing Over the Last 10 Itera-
tions

Figure 59: Total Receiver Fuel Burned Stochastically Trained Simulations versus
Deterministically Trained Simulations - Training for 19 iterations and Testing Over
the Last 10 Iterations

Since the deterministic data sets see the same receiver missions in each iteration it

is expected that the deterministic data simulations would have a lower fueling delay

than the stochastic simulations. The result which is opposite of the expectation, is
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Figure 60: Total Delay Stochastically Trained Simulations versus Deterministically
Trained Simulations : Set 2 - Stochastically trained fuel demand : Set 1 - Determin-
istically trained fuel demand

not a shortcoming of the model, but rather an illustration of how the model views

queuing time and tanker movements. Within the model, as mentioned earlier in this

thesis, there is a changeable parameter which concerns the amount of delay a receiver

can accommodate before a major negative penalty is accrued. For the aerial refueling

model simulations this parameter was set at 15 minutes which allowed for queuing to

occur in the system. If the parameter was set to zero minutes, then the model would

see no reason to have planes wait in a queue, and instead of having a tanker refuel

several receivers back to back, each receiver would be refueled by its own tanker.

Obviously, the former behavior of queuing is preferable to the latter, and hence the

parameter is set at 15 minutes. In a deterministic simulation the model attempts to

minimize the queuing time of each receiver, subject to the goal that fueling delay is

less than fifteen minutes. When the queuing time is under fifteen minutes the fuel

burn rate of a receiver is far less costly than sending out an additional tanker, and

thus in a deterministic model there are many receivers which queue between zero and

fourteen minutes.

The stochastic data simulations are also bound by the same parameter; however,
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unlike the deterministic simulations the stochastic simulations do not know which

missions will be in the next iteration. Given that limitation how do the stochastic

simulations keep fueling delays under 15 minutes, by sending out as many tankers to

a locations as possible. Since all of the samples are drawn from the SDS over a series

of iterations, each available receiver mission is likely to be seen within the system. If

a tanker is unavailable for a receiver at that time and the mission fails, or there is

a large fueling delay, then the value function approximations respond by putting a

high value of having additional tankers at that track within that time period. The

model learns quickly to send an overabundance of tankers to locations to mitigate

possible mission failures and fueling delays. As shown in Figure 61, the stochastic

simulations use far greater tankers per time step than the deterministic simulations.

On average throughout the simulations of the available 40 tankers in the system, the

deterministic simulations set used 16 tankers while the stochastic simulations used 25

tankers.

Figure 61: Tanker Usage Per Time Step Stochastically Trained Simulations versus
Deterministically Trained Simulations - Training for 19 iterations and Testing Over
the Last 10 Iterations

It is interesting to note the differences between the training phases of the simu-

lations; however, these simulations were run to test the differences in the stability of
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the trained value functions when facing stochastic data sets. The expectation is that

while the deterministic simulations excelled in reducing total cost, the value functions

will not be able to accommodate stochastic data as well as the stochastically trained

value functions. For both the stochastic and deterministic simulations, the trained

value functions were tested with 10 different sample realizations of receiver missions.

Neither the stochastic nor deterministic simulations’ value functions were updated

during the testing, but rather it was a test of how flexible the value functions were

in accommodating different demands. Looking again at Figure 55, each of the last

10 data points are averages across all fifteen simulations at that iteration. Therefore,

while it is useful to see the total cost plotted as iterations, there is no reason to

compare Iteration 23 from the deterministic simulation with Iteration 23 from the

stochastic simulation. For Figure 55, you can see that it appears as though both the

stochastic and the deterministic simulations optimize equally during the stochastic

testing. As shown in Figure 62, which is the average across all 150 sample realizations

from both the deterministic and stochastic simulations, the difference between the two

is only 55,468 pounds of fuel (.01 percent). The differences between the simulations

appear to be smaller than the breadth of a single hair. However, while the total cost

are similar it is instructive to examine the components of the total cost.

The two components of the total cost are the total receiver fuel cost and the to-

tal tanker fuel cost. Looking again at Figure 61, it is obvious that the stochastic

simulation will have a much greater tanker fuel cost due to it sending more tankers.

However looking at Figure 59, it is obvious that the receiver fuel cost is much lower for

the stochastic simulation than the deterministic simulation due to much less queuing.

The reason for this is the ability of the stochastically trained simulations to accom-

modate stochastic receiver missions and maintain a low overall fueling delay in the

testing phase. The deterministically trained value functions cannot readily handle the

stochastic receiver demands and the fueling delays go through the roof. The fueling

delays for the deterministically trained simulations are almost five times those of the

stochastically trained data sets.
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Figure 62: Total Delay Deterministically Trained (Set 1) versus Stochastically Trained
(Set 2): The Testing Phase

The conclusions from these simulations are not as readily apparent as anticipated;

however, they do illustrate both the technical and the subjective stability of the value

functions. The stability of the value functions and their ability to respond to stochas-

tic data are shown through the lack of variability when the stochastically trained value

functions were tested on a stochastic data sets, especially when compared to the huge

cost increase of the deterministically trained value functions. While it would have

been a bonus to see a great total cost difference during the testing phase, the more

important result was the differences in the stability of the solution and this showed

that the value functions of a stochastically trained simulation are more stable than

a deterministically trained simulation as expected. The subjective conclusions from

these simulations focus on the preferences of mission planners to minimize fueling

delays, particularly fueling delays longer than a preset time. The stochastic simula-

tions were far and away the better choice when measuring fueling delays and may be

useful for Air Force mission planners. While changing the entire composition of the

receiver missions between simulations is not likely to benefit mission planners a great

deal, the model can incorporate such uncertainties. More likely mission planners who

know a base set of missions, but not the additional missions which may appear, could
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run a similar simulation which incorporates additional missions randomly throughout

the iterations. By running a simulation with a slightly perturbed data set the results

would be flexible to the uncertainties inherent in mission planning.

4.4 Training Value Functions and Perturbed Solutions

In the previous section, the value functions were tested through a series of simulations

which looked at how robust the value functions are when faced with varying demands.

The results of the previous section illustrate the robustness of the algorithm and the

value functions, but they could be considered outside of the realm of possibilities

for planning purposes. However, the previous section did highlight the ability of the

value functions to incorporate new data on a continual basis and produce acceptable

solutions. It is the ability to produce an acceptable solution quickly which will be

examined in this section, as it is determined how quickly a perturbed solution can be

solved using trained value functions.

During combat mission planning, a mission planner may be tasked with produc-

ing a continually updated an aerial refueling solution for inputs which change by the

hour. Given the complexities and time required to run a simulation, it could be im-

possible to continually rerun the refueling model to find a new solution without any

shortcuts. This is a common problem in industrial problems when a linear program-

ming approach is required with several hundred thousand or million variables. In an

industrial problem, when a linear program is used the fact that a previous solution

provides a head start on reaching the optimal solution for a perturbed problem can

be exploited. It will be illustrated that this algorithm has a similar structure, such

that a perturbed problem can exploit the solutions from a similar problem to quickly

converge on a new solution.

This section is not concerned with altering the demands continually throughout

the iterations, but rather it focuses on using previously created value functions to

quickly find a solution for a perturbed data set. In this manner the perturbations
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to the inputs can be viewed as perturbing a linear program and using the previous

solution as a head start toward reaching optimality. Since the SDS is quickly solved

both in iterations required and actual computing time it is not as instructive to use

in this simulation and only the LDS will be examined.

To create a new data set, NDS, the LDS was copied so the NDS was twice the

size of the LDS. Since the times and requirements of the LDS are already established,

it was determined that additional missions in the real world would likely be similar

in nature to those of the existing data set. This is due to the requirements facing a

mission planner when it is decided that instead of sending four fighters as a bomber

escort, six fighter will be sent, or instead of one bomber they will send two bombers

and additional fighter escorts.

To test the ability of trained value functions to quickly reach an optimal solution by

perturbing the inputs, the first step was to train the value functions through running

a 100 iteration simulation on the LDS. After 100 iterations, the inputs were perturbed

such that the original LDS missions were included along with a random sample of

approximately 20 percent of the LDS missions from the NDS. The simulation was

then run for another 50 iterations to determine when a stable solution was reached.

As with previous stochastic simulations, a series of simulations were run (five) which

were then averaged to get the final results. To further illustrate how the perturbed

solutions optimized Figure 63 shows the original optimization of the LDS for 100

iterations along with the perturbed solution which occurs after the 100th iteration.

As shown in Figure 63, by using previously created value functions the aerial

refueling model was able to quickly assimilate the new missions. To further illustrate

how quickly the model responded, it is illustrative to look at the components of total

cost in Figure 65. The receiver’s total cost quickly reaches a steady state value as

the queuing within the system is brought down to a reasonable level, shown in Figure

64. The tankers take more time to adapt to the new receiver missions, which is

due to an overcorrection in response to the increased fueling delays directly after the

perturbation. Once the value functions correctly assimilate the new values of having
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Figure 63: Total Cost for a Data Set (LDS) Perturbed at the 100th Iteration (Adding
≈ 20 Percent More Missions)

additional tankers at a track, the tankers reduce to more natural levels.

Figure 64: Delay for a Data Set (LDS) Perturbed at the 100th Iteration (Adding ≈
20 Percent More Missions)

A comparative examination of various outputs from the end of the perturbed

simulation (Iteration 150) and the expected values of the outputs (computed as 120%

of values at Iteration 100) are shown in Figures 66-69. While the expected values are

only approximations as the composition of the perturbed receiver missions entering

the system is unknown, it provides a baseline for comparison. Using the expected

values as a comparison, the perturbed solution’s outputs compare favorably after only
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Figure 65: Total Fuel Burned for a Data Set (LDS) Perturbed at the 100th Iteration
(Adding ≈ 20 Percent More Missions)

50 iterations. The differences in the delay and tanker fuel cost are lower than their

expected values by 7 and 9 percent, while the total cost and receiver cost are higher

by 6 and 5 percent, respectively. These values are extremely close and indicate that

the model optimized incredibly well with the added mission load. Since the fueling

delay is lower than expected but the receiver fuel cost is increased, it indicates that

the receiver missions added to the system demanded high fuel loads. Therefore, the

cost of refueling those receivers was higher than expected which was reflected in the

receiver fuel burn cost and subsequently the total cost of the system.

Figure 66: Delay after Perturbation versus Previous Delay and Expected Delay for
LDS and Perturbed LDS (Adding ≈ 20 Percent More Missions)

While the previous example of perturbing the data set by 20 percent provided
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Figure 67: Total Cost after Perturbation versus Previous Cost and Expected Cost for
LDS and Perturbed LDS (Adding ≈ 20 Percent More Missions)

Figure 68: Total Receiver Fuel Cost after Perturbation versus Previous Fuel Cost
and Expected Fuel Cost for LDS and Perturbed LDS (Adding ≈ 20 Percent More
Missions)

Figure 69: Total Tanker Fuel Cost after Perturbation versus Previous Fuel Cost
and Expected Fuel Cost for LDS and Perturbed LDS (Adding ≈ 20 Percent More
Missions)
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solid results which proved the flexibility and robust nature of the value functions, it

was an extreme case. In a more realistic real world example, the perturbations would

likely be closer to 5 or 10 percent. To test the ability of the aerial refueling model to

assimilate quickly to smaller perturbations, the value functions were trained on the

identical data set as before and during the perturbation phase either 5 percent or 10

percent more missions were added to the system.

The results of the smaller perturbations as well as the original perturbation are

shown in Figures 70 and 71. For the smaller perturbations the model responds almost

immediately in assimilating the missions and reaching an optimal solution. After a

brief spike, the value functions are trained to send out the appropriate number of

tankers and the total cost settles into a long run value. The smaller perturbations,

which are considered to be more realistic, are handled extremely well by the value

functions and provide a great deal of value to a mission planner. After doing an

initial run a mission planner could store the value functions and respond to any small

perturbations by running the perturbed data set with the previously trained value

functions. Using previously trained value functions, a mission planner could quickly

and accurately assemble all the contingency plans for the days mission or respond on

the fly to new mission requirements.

Figure 70: Testing Different Levels of Perturbation and Their Rates of Convergence
(Total Cost) after the Perturbations
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Figure 71: Testing Different Levels of Perturbation and Their Rates of Convergence
(Total Cost) after the Perturbations

The capabilities of the aerial refueling model to assimilate stochastic data are

of great use to Air Force mission planners. The ability to quickly respond to the

frictions of warfare and produce usable results is a major strength of the model.

The cornerstone to the flexibility of the model are the value functions which in the

stochastic sections of this thesis have been proven to be very robust. The value

functions have been shown to accommodate uncertainties of fuel loads, refueling times,

and most impressively differing receiver mission inputs. The ability of the value

functions to adapt to different stochastic inputs is a great strength of the model

which cannot be replicated in a myopic simulation model and could provide the Air

Force with an increased ability to plan combat missions.
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5 Conclusions

The ability of the aerial refueling model to accurately model the realities of in-flight

refueling are a leaps and bounds improvement over the current system. The model is

relatively insensitive to inputs in the system such as tankers and provides incredibly

robust solutions. The solution quality produced by the aerial refueling model is

both efficient as well as flexible, which is a hallmark of solutions produced through

approximate dynamic programming.

Continuing refinement and expansion of the aerial refueling model could provide

a boon for the capabilities of the modern US Air Force fleet. Through the use of the

aerial refueling model the existing capabilities of the refueling fleet can be expanded

and support combat operations for the foreseeable future.
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